

ИНСТИТУТ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ РОССИЙСКОЙ АКАДЕМИИ НАУК

117997, г. Москва, ул. Профсоюзная, 84/32 +7 (495) 333-52-12, факс: +7 (495) 333-12-48

iki@cosmos.ru IKI.COSMOS.RU

МИССИЯ ИКИ РАН

познание природы, освоение космоса, содействие техническому прогрессу, развитию человека и общества

Космос предоставляет неисчерпаемые возможности для исследований, неожиданных открытий, дает шанс изучать явления, невозможные на Земле. В последние два десятилетия наше понимание окружающего мира существенно изменилось. Мы узнали о существовании темной энергии и темной материи, убедительно подтверждена теория «Большого Взрыва», найдены тысячи планет у других звезд. На горизонте – открытие принципиально новых физических законов и ответ на важнейший вопрос – есть ли жизнь и разум во Вселенной за пределами Земли.

взглянуть на себя «со стороны». Мы стали лучше понимать состояние и развитие планеты Земля как космической экосистемы, на которую влияют Солнце и другие факторы космического пространства. Из космоса мы получаем объективную и оперативную информацию о состоянии климата, природных и рукотворных систем на Земле. Космические технологии не только решают многие задачи сегодняшнего дня, но и помогут найти ответы на глобальные вызовы XXI века, один из которых – истощение многих земных ресурсов.

Одновременно космос помогает

ПЕТРОВ Георгий Иванович директор ИКИ АН СССР 1965–1973

САГДЕЕВ Роальд Зиннурович директор ИКИ АН СССР 1973–1988

ГАЛЕЕВ Альберт Абубакирович директор ИКИ АН СССР (с 1992 г. РАН)

ЗЕЛЕНЫЙ Лев Матвеевич директор ИКИ РАН 2002–2018 научный руководитель ИКИ РАН с 2018

На повестке дня – начало освоения дальнего космоса. Человечество «обречено» стать поистине космической цивилизацией.

ИКИ РАН находится в авангарде мировой космической деятельности. Формируются перспективные программы исследований и освоения дальнего космоса, развиваются новые направления космической науки, создается инновационная техника. О некоторых наших достижениях мы расскажем на следующих страницах.

ПЕТРУКОВИЧ Анатолий Алексеевич директор ИКИ РАН с 2018

55 лет назад

Институт космических исследований был образован в 1965 году в структуре Академии наук СССР по инициативе её президента М.В. Келдыша для закрепления ведущего положения страны в освоении космического пространства. Постановление ЦК КПСС определило ИКИ АН СССР как головную организацию по научным исследованиям в области изучения космоса и поставило перед институтом задачи научно-методического руководства и обобщения результатов работ по исследованию верхних слоев атмосферы, космического пространства, Луны и планет

Солнечной системы, которые проводили организации Академии наук, министерств и ведомств.

Основу ИКИ составили коллективы из других научных, образовательных и производственных организаций, уже работавшие в этой области. В итоге многолетней работы в этом «плавильном котле» сформировался уникальный институт. В нем выросло несколько научных школ мирового уровня. Его сотрудники воплотили в жизнь более 150 космических проектов. Сегодня ИКИ РАН во многом определяет лицо российского научного космоса в мире.

сегодня

ИКИ РАН ведет работы практически по всем направлениям космических фундаментальных наук и многим прикладным тематикам: астрофизике, планетным исследованиям, физике космической плазмы, гелиогеофизике и другим геонаукам, технологиям дистанционного зондирования Земли, космической оптике и электронике, навигации и механике, основам освоения ближнего и дальнего космоса. ИКИ РАН – головная организация по большинству научных проектов Федеральной космической программы России: ЭКЗОМАРС, СПЕКТР-РГ, РЕЗОНАНС, лунным миссиям – и участвует почти во всех остальных проектах. При ведущей роли ИКИ РАН создается российская система приема и обработки данных научных

Сегодня приборы ИКИ РАН работают на 18 космических аппаратах различного назначения, в том числе на пяти зарубежных межпланетных станциях: MARS ODYSSEY (ESA),

космических миссий.

MARS EXPRESS (ESA), MARS SCIENCE LABORATORY / CURIOSITY (NASA), LUNAR RECONNAISSANCE ORBITER (NASA), BEPICOLOMBO (ESA/JAXA) и МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ.

Центр коллективного пользования «ИКИ-Мониторинг» предоставляет доступ к более чем 5 петабайтам информации, полученной спутниками дистанционного зондирования Земли, и инструментам для ее обработки.

Институт – центр космического приборостроения, в котором разрабатывается, изготавливается и испытывается самая разнообразная бортовая и наземная аппаратура научного и служебного назначения. Оборудование, создаваемое в ИКИ, является критически важной частью многих российских космических и земных программ.

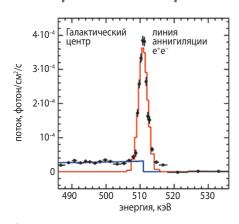
В городе Таруса (Калужская область) работает приборостроительный филиал – Специальное конструкторское бюро космического приборостроения ИКИ РАН.

Всего в ИКИ около 1200 сотрудников, в их числе четыре академика, три члена-корреспондента РАН, четыре профессора РАН.

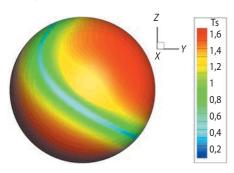
Институт – ведущая образовательная организация в области космической науки. Работают аспирантура, три базовые кафедры в ведущих вузах России, проводятся занятия со школьниками, научно-популярные мероприятия, действует уникальная выставка, посвященная космической науке. Наше будущее – развитие ИКИ

как международного центра космической фундаментальной и прикладной науки, инновационного производства и космического образования для реализации новых смелых проектов в ходе бесконечного познания Вселенной.

АСТРОФИЗИКА


Астрофизические исследования – важнейший источник информации о фундаментальных законах природы, строении Вселенной и ее объектах. Они открывают для изучения области физических параметров, не достижимые в земной лаборатории. Это исключительно высокие энергии и плотности, огромные масштабы и скорости, а также – возможность заглянуть глубоко в историю нашей Вселенной.

Область высоких энергий – рентгеновский и гамма-диапазоны – уникальна, так как у многих наиболее интересных объектов: нейтронных звезд, черных дыр, скоплений галактик – выделение энергии максимально именно в рентгеновском и мягком гамма-диапазонах. Сейчас на орбите работает около десятка рентгеновских и гамма-обсерваторий. Россия, и, в частности, ИКИ РАН, здесь находятся в числе мировых лидеров. В ИКИ создают приборы для рентгеновской астрономии мирового


уровня и получают прорывные научные результаты, отмеченные престижными российскими и международными премиями. С 2019 года в космосе работает астрофизическая обсерватория СПЕКТР-РГ, ведется активная работа над экспериментами на МКС, рентгеновскими инструментами и системами нового поколения. Сотрудники ИКИ работают с данными многих орбитальных и наземных обсерваторий. В их числе – международная рентгеновская обсерватория INTEGRAL (ESA), 25 % наблюдательного времени которой принадлежат российским ученым. В ИКИ РАН находится Российский центр научных данных обсерватории INTEGRAL.

Тематика научных работ сотрудников исключительно широка: от теоретических исследований физических процессов в ранней Вселенной до исследования гамма-всплесков.

эксперимент и теория

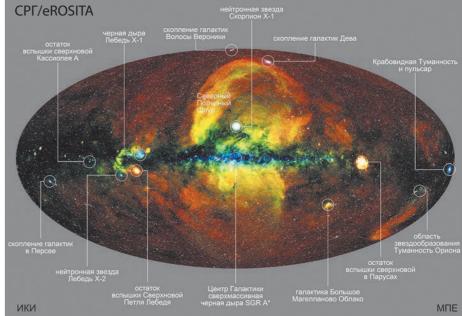
Спектр гамма-излучения, связанного с аннигиляцией позитронов в центральной области Галактики, измеренный с помощью международной обсерватории INTEGRAL

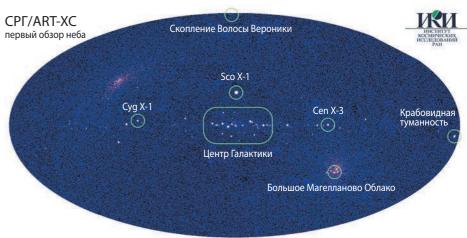
Трехмерное распределение температуры на поверхности нейтронной звезды

рентгеновские детекторы

Сборка полупроводниковых детекторов телескопа ART-XC им. М.Н. Павлинского

2002 – настоящее время



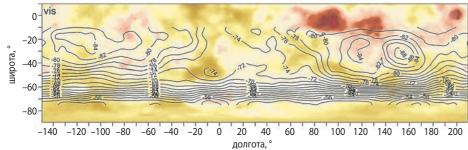

Обсерватория гамма-лучей INTEGRAL (ESA)

2025+

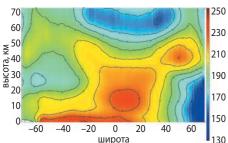
Эксперимент МОНИТОР ВСЕГО НЕБА на борту МКС Исследования космического рентгеновского фона

Изображения неба в мягких и жестких рентгеновских лучах, полученные с помощью германского телескопа eROSITA и российского телескопа ART-XC им. М.Н. Павлинского обсерватории СПЕКТР-РГ в ходе обзора, который начался в декабре 2019 года и продлится 4 года. Уже обнаружено более двух миллионов рентгеновских источников, большинство из которых были ранее неизвестны.

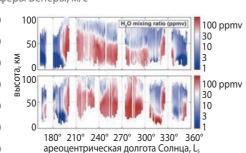
ПЛАНЕТЫ MAPC BEHEPA МЕРКУРИЙ

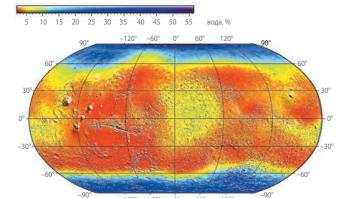

Исследования других планет, в первую очередь, экспериментальные одно из важнейших направлений деятельности Института. В арсенале исследователей – методы оптической, инфракрасной и нейтронной спектрометрии, фотометрии и радиометрии, масс-спектрометрии,

газовой хроматографии, рентгеновской флюоресцентной спектрометрии, ядерной спектрометрии, метеорологические измерения.


Научная аппаратура, созданная в ИКИ РАН, работает на российских космических аппаратах и на борту многих зарубежных миссий.

Наряду с экспериментальными исследованиями большое внимание уделяется методам обработки данных и моделированию процессов в планетных атмосферах, в том числе на ранних стадиях их эволюции.


Новая захватывающая задача – исследования экзопланет и возможность наблюдать их непосредственно с помощью новейших приборов.


Зональный компонент скорости ветра атмосферы Венеры, м/с

Тепловая структура атмосферы Марса во время пылевой бури, К

Профили водяного пара в атмосфере Марса в северном и южных полушариях. Цвет – величина коэффициента перемешивания водяного пара в частицах на миллион в объеме (ppmv)

Карты глобального распределения воды в приповерхностном слое Марса по данным нейтронных спектрометров HEND (слева) на борту КА MARS ODYSSEY и FREND (справа) на борту КА EXOMARS 2016 TGO

2016 Марсианская орбитальная станция EXOMARS спектрометра ACS

2001 – настоящее время

2003 – настоящее время

Орбитальная станция MARS EXPRESS (ESA

- Видимый и инфракрасный
- картирующий спектрометр OMEGA

 Планетный Фурье-спектрометр PFS

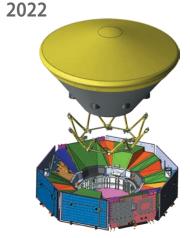
Инфракрасный и ультрафиолетовый спектрометр SPICAM

2011 – настоящее время 2006-2015

Орбитальная станция VENUS EXPRESS (ESA)

- Ультрафиолетовый и инфракрасный атмосферный спектрометр SPICAV/SOIR

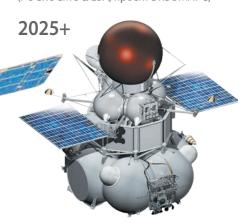
 Планетный Фурье-спектрометр PFS


Марсоход CURIOSITY (NASA) • Нейтронный спектрометр DAN

2018 – настоящее время

рбитальная миссия BEPICOLOMBO (ESA, JAXA) Исследования Меркурия

- Гамма- и нейтронный спектрометр MGNS
- Ультрафиолетовый спектрометр PHEBUS
- Камера наблюдения в лучах натрия MSASI
- Панорамный энерго-массспектрометр PICAM

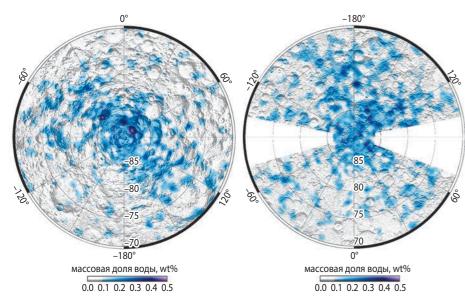


Посадочная миссия EXOMARS-2022 (POCKOCMOC/ESA, проект ЭКЗОМАРС)

Орбитальная станция SHUKRAYAAN I (ISRO) Исследования Венеры

• Инфракрасный спектрометр VIRAL

Миссия ВЕНЕРА-Д


ЛУНА

На рубеже XX–XXI веков появились данные о присутствии «вечной мерзлоты» – замерзшей воды в верхнем слое грунта полярных областей Луны. В 2009 году на борту КА LRO (NASA) начал работу российский нейтронный телескоп LEND, созданный в ИКИ. Его данные позволили найти в южном кратере Кабеус район с самым высоким содержанием воды на Луне (около 5 %).

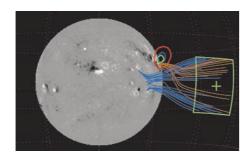
И вода, и другие летучие вещества в полярном грунте содержат «летопись» процессов, происходивших в космосе и на Луне в течение миллиардов лет.

Кроме этого, залежи вечной мерзлоты теоретически можно использовать для обеспечения посещаемых лунных станций водой и холодом.

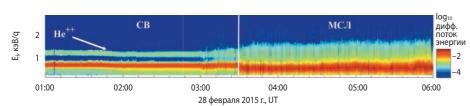
Россия активно готовится к грядущему освоению Луны. Первые миссии новой лунной программы продолжают нумерацию, начатую советскими аппаратами серии ЛУНА в 1960-70 годы, которую завершила миссия ЛУНА-24, доставившая на Землю лунный грунт из Моря Кризисов в 1976 году. ИКИ РАН назначен ведущей научной организацией по осуществлению проектов ЛУНА-25, ЛУНА-26 и ЛУНА-27. Они должны обеспечить переход ко второму этапу отечественной лунной программы, началом которого станет первая пилотируемая экспедиция в окрестность Южного полюса.

Карта распространенности воды в метровом слое грунта полярных районов Луны по данным прибора LEND

КОСМИЧЕСКАЯ ПЛАЗМА И СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ

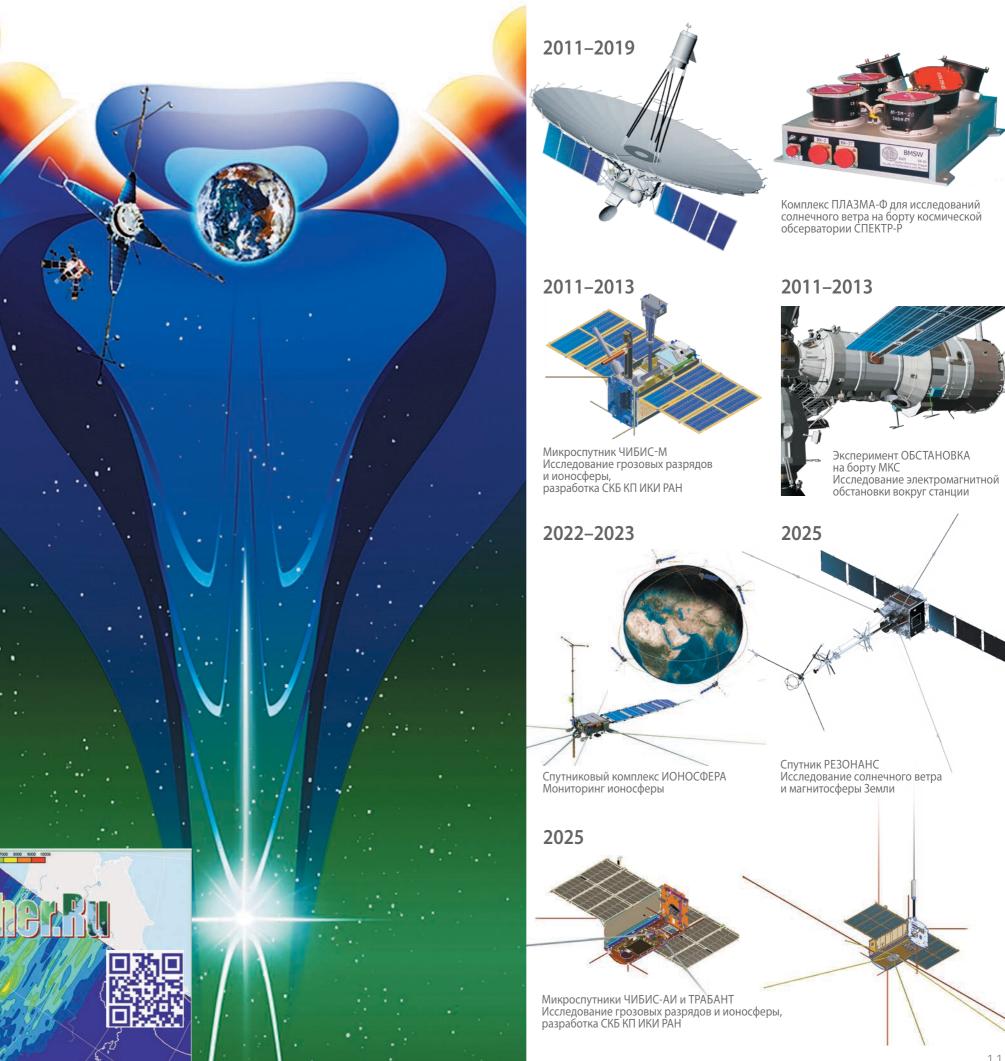

Исследования Солнца, околоземной плазмы, геомагнитной активности – одно из важнейших направлений космической науки и техники.

Фундаментальные исследования нацелены на понимание основных физических процессов в бесстолкновительной космической плазме и причинно-следственных связей в системе Солнце – Земля.


Мониторинг гелиогеофизической обстановки выполняется для учета и прогноза ее влияния на современные технические системы. За 55 лет работы ИКИ провел плазменные эксперименты на десятках космических аппаратов у Земли, Луны, Венеры, Марса, комет. Сформированы уникальные школы теории космической плазмы и приборостроения.

Фазовая диаграмма ионов в хвосте магнитосферы

Модель магнитного поля солнечной вспышки


Измерения спектра ионов плазмы при пролете из солнечного ветра в магнитосферу, БМСВ

разработка приборов

прогноз космической погоды

ЗЕМЛЯ

Исследования и наблюдения Земли из космоса – мощнейший инструмент, который предоставила нам космическая деятельность. Это единственная возможность постоянно и независимо получать объективную, оперативную и однородную информацию о состоянии территории, климата, природных и рукотворных объектов, которая необходима для исследования Земли, планирования развития страны и всего мира, быстрого парирования угроз. Ключевое значение имеет мониторинг обширных труднодоступных зон, в первую очередь Арктики.

Стратегическая задача Института – создание научной и технической основы национальной информационной системы дистанционного глобального спутникового мониторинга.

основные задачи:

• разработка научных основ, методов, технологий и систем дистанционного зондирования Земли для изучения и мониторинга природных и антропогенных процессов, явлений и объектов;

- разработка методов распределенного хранения, обработки и анализа сверхбольших объемов данных спутниковых наблюдений Земли;
- разработка высокоточных измерительных комплексов пассивного микроволнового зондирования, проведение подспутниковых экспериментов;
- исследования и моделирование процессов и явлений в различных средах (океан, атмосфера и т.д.), глобальных изменений (включая арктический регион), катастрофических природных явлений, наземных экосистем и др.

основные объекты:

- морские гидрофизические процессы: волнение, течения и пр.;
- криосфера Земли: ледники, вечная мерзлота, ледяной покров морей;
- взаимодействие океан-атмосфера, процессы переноса атмосферной влаги и скрытого тепла, динамика циклонов и тайфунов, динамика климата;
- антропогенные и естественные загрязнения, прогноз их распространения;
- растительный покров, пожары, сельскохозяйственные угодья;
- вулканическая деятельность.

Карта запаса стволовой древесины в лесах России

Карта лесов России

КАРТА РАСТИТЕЛЬНОСТИ РОССИИ ЖИ

Карта растительности России

Карта пахотных земель России

Карта повреждения лесов России

анализа данных дистанционных наблюдений для разработки методов и подходов глобального мониторинга сельского хозяйства в интересах проекта GEOGLAM

работа с ланными спутниковых наблюдений для решения задач исследования Мирового океана

VolSatView

данными для мониторинга вулканической активности Камчатки и Курил

ЦЕНТР КОЛЛЕКТИВНОГО ПОЛЬЗОВАНИЯ «ИКИ-МОНИТОРИНГ»

Доступ к большим многолетним архивам спутниковых данных, различным информационным продуктам, получаемым на их основе, и вычислительным ресурсам для их анализа и обработки. Архивы ЦКП «ИКИ-Мониторинг» содержат данные более 40 приборов наблюдения, установленных на отечественных и зарубежных спутниках Д33. В ряде случаев временная глубина архивов превышает 30 лет.

Суммарный объем спутниковых данных в архивах ЦКП «ИКИ-Мониторинг» в середине 2021 года превышает 5 петабайт. В состав ЦКП «ИКИ-Мониторинг» входит уникальная научная установка BEГA-Science для работы со спутниковыми данными

В 2021 году более 100 российских и зарубежных организаций используют ресурсы ЦКП.

через веб-интерфейсы.

На основе разработанных в ИКИ РАН технологий было создано, внедрено и поддерживается несколько десятков различных научных и прикладных систем дистанционного мониторинга, в том числе в составе ЦКП «ИКИ-Мониторинг».

анализ данных спутниковых наблюдений для оценки и мониторинга возобновляемых биологических ресурсов

BEFA-GEOGLAM

обеспечение инструментами

обеспечение спутниковыми

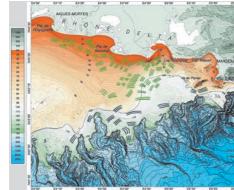
состоянии окружающей среды на территории России, подготовка информационных продуктов для анализа пожарной обстановки и последствий пожаров

сбор информации о пожарах,

ИСДМ-Рослесхоз

Оценка изменчивости экологического состояния Каспийского моря

в текущем столетии по данным спутникового дистанционного зондирования



Космическая научная обсерватория углерода лесов России


Разработка методов и технологии комплексного использования данных дистанционного зондирования Земли из космоса для развития системы национального мониторинга бюджета углерода лесов России в условиях глобальных изменений климата

Схема поверхностных проявлений внутренних волн различного происхождения на спутниковых изображениях

пленок естественного происхождения (по спутниковым данным 2009–2019 гг.)

ОПТИЧЕСКИЕ ПРИБОРЫ и системы

С 1967 года в оптико-физическом отделе ИКИ РАН создаются уникальные оптико-электронные приборы и программное обеспечение для автономного определения ориентации и местоположения космических аппаратов, оптической навигации, дистанционного зондирования, съемки и изучения Земли и других тел Солнечной системы.

Объединение цифровой камеры с вычислительным устройством, начиненным соответствующим программноматематическим обеспечением позволяет решать широкий круг прикладных задач космической и авиационной техники.

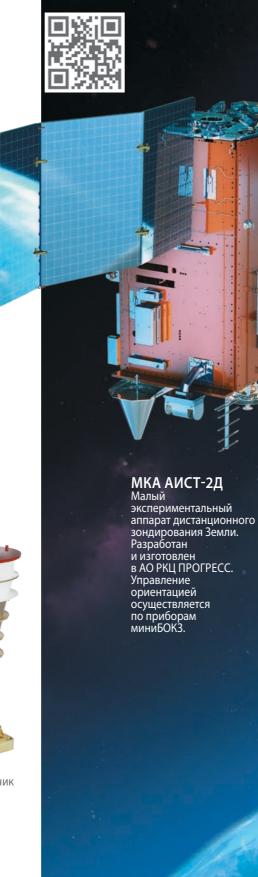
датчики звездной ориентации

Одно из основных направлений деятельности - создание приборов астроориентации семейства БОКЗ (Блок определения координат звезд), название которых уже стало признанной «торговой маркой» среди компаний – изготовителей космических аппаратов.

Различные модификации звездных датчиков БОКЗ позволяют измерять направление на звезды с беспрецедентной точностью: до долей угловых секунд в сложных динамических условиях вращения космического аппарата.

Звездный датчик микро моноблок 20 x 20° точность 0,8 угл. сек скорость до 0,8°/с 1.5 Вт. 0.6 кг

Звездный датчик два блока 20 x 20° точность 0,8 угл. сек. скорость 5 Вт, 1,2 кг


К началу 2021 года в космос было выведено более 120 приборов звездной ориентации серии БОКЗ на 53 космических аппаратах, 24 из которых находятся в активной эксплуатации на орбите.

Звездный датчик высокоточный моноблок 10 x 10° точность 0,4 угл. сек. скорость 15 Вт. 4 кг

Звездный датчик сверхвысокой точности два блока 15 x 11° точность 0,25 угл. сек. скорость до 8 °/с 15 Вт. 6 кг

Суммарная наработка приборов БОКЗ в космосе составляет более 4 миллионов часов. Еще около 50 приборов БОКЗ находятся на различных этапах изготовления и наземной отработки.

система автономной оптической навигации

Оптико-электронные приборы, сочетающие в себе звездные датчики, фотограмметрические камеры и вычислительные устройства, позволяют решать широкий круг задач:

- навигация в орбитальном полёте;
- выбор места безопасной посадки;
- навигация при стыковке КА;
- внутриатмосферная астроинерциальная навигация.

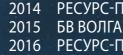
цифровые спутниковые камеры

Компактные многофункциональные цифровые камеры предназначены для длительной работы в условиях космического пространства.

Видеокамера 2048 х 2048 пикс. 20°, 55° или 110° Моно/цвет RGB LVDS/CameraLink 1,5 Вт, 300 г

Блок сбора, сжатия и хранения данных 8 LVDS входов по 54 Мбит/с память 64 Гбит MIL1553B LVDS выход 10 Вт, 1,7 кг

аппаратура дистанционного зондирования



На борту космических аппаратов МЕТЕОР-М успешно функционируют комплексы аппаратуры многозональной спутниковой съемки КМСС и КМСС-2, обеспечивающие регистрацию изображений Земли с разрешением 60 м в полосе 1000 км.

Многозональный сканер МСУ-100TM 32°, 8000 пикс. призменный спектроделитель 3 канала 0,55/0,65/0,85 мкм

2000

2003

2007

2013

2014

2014

2016 PECYPC-Π №3 2016 БВ ВОЛГА

2016 АИСТ-2Д 2017 БВ ВОЛГА

METEOP-M №2.1 2019 METEOP-M №2.2

ЯМАЛ-100 КА 1

ЯМАЛ-100 КА 2

ЯМАЛ-200 КА 1

MKC

2006 РЕСУРС-ДК

2006 БЕЛКА

2011 СИЧ-2

2003 ЯМАЛ-200 КА 2

EGYPTSAT-1

2009 METEOP-M №1

2011 ФОБОС-ГРУНТ

РЕСУРС-П№1

MKA ABPOPA

METEOP-M №2

МКА-ФКИ №2

РЕСУРС-П №2

2012 МКА-ФКИ

2013 БВ ВОЛГА

2014 КОНДОР-Э

2019 СПЕКТР-РГ

2021 МЛМ НАУКА

Во время электрических испытаний аппаратуры

испытания

В ИКИ РАН проводятся все виды испытаний бортовой аппаратуры:

- климатические испытания;
- вакуумные испытания;
- механические испытания: вибрационные и ударные воздействия, линейные перегрузки;
- испытания на электромагнитную совместимость и электро-статический разрял

Каждый год в ИКИ РАН испытания проходят более сотни приборов.

Испытания на электромагнитную совместимость

вспомогательные службы

В Институте имеются все необходимые вспомогательные службы: метрологическая служба, технологическая служба, ОТК, группа входного контроля, технический отдел, архив и библиотека технической документации.

Все работы ведутся под контролем ОТК и ВП МО РФ.

НАЗЕМНЫЕ НАУЧНЫЕ КОМПЛЕКСЫ

Подготова программы работы, расчет орбиты, управление научной аппаратурой во время полета, получение, обработка и хранение данных эксперимента – основные задачи наземных научных комплексов (ННК). От ежедневной слаженной работы на Земле зависит, насколько космический эксперимент будет успешен, сколько научной информации и какого качества будет получено. В ИКИ РАН реализованы как относительно компактные ННК для поддержки микроспутников серии ЧИБИС, так и крупные международные комплексы для таких проектов как СПЕКТР-РГ и ЭКЗОМАРС, объединяющие компьютерные центры, коллективы ученых и научные архивы в нескольких странах. Построенные с учетом международных стандартов

и рекомендаций, такие комплексы

позволяют осуществлять управление целым спектром космических экспериментов.

Сегодня в кооперации с другими организациями ИКИ РАН создает Российский комплекс приема научной информации и резервного управления (РКПНИиРУ), включающий антенны дальней космической связи и предназначенный для работы с космическими аппаратами, находящимися на предельно возможных расстояниях. Впервые начата совместная работа российских и европейских станций связи по приему данных и управлению космическими аппаратами в дальнем космосе. В ближайшее время созданная система будет использована в проекте ЭКЗОМАРС и других перспективных проектах.

СПЕЦИАЛЬНОЕ КОНСТРУКТОРСКОЕ БЮРО КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ ИКИ РАН

Свою историю СКБ КП ИКИ ведет с 30 июня 1978 года, даты принятия Президиумом АН СССР решения о создании в городе Таруса Калужской области опытного производства приборов для космических исследований.

Строительство опытного производства ИКИ началось в 1980 году и было включено в перечень 100 важнейших возводимых объектов Военнопромышленного комплекса СССР.

Первой была введена в эксплуатацию приемная антенна ETMC («Единая телеметрическая система социалистических стран»). С 1978 года антенна принимала информацию со спутников серии ИНТЕРКОСМОС. В 1986 году СКБ КП ИКИ стало

самостоятельным комплексным приборостроительным подразделением, включающим проектно-конструкторские подразделения разработчиков, опытное производство и испытательную базу.

Основное направление деятельности предприятия – научно-исследовательские и опытно-конструкторские работы в области космического и наземного приборостроения.

вычислительные комплексы для авиатренажеров

Обеспечение работы математической модели самолета и интерфейса с реальной аппаратурой авионики, входящей в состав тренажера.

Применение: процедурный тренажер SSJ–100 на базе АО ГСС, г. Жуковский; Комплексный тренажер, Ульяновский институт гражданской авиации им. Б. П. Бугаева.

Кресло инструктора в кабине тренажера

автоматизированные рабочие места системы бортовых измерений (АРМ СБИ)

Система бортовых измерений устанавливается на опытных гражданских самолетах для получения исчерпывающей информации о состоянии самолетных систем в процессе их испытаний и включает в себя сервер для архивирования данных и четыре рабочих места инженеров-испытателей.

АРМ СБИ SSJ–100 установлены на опытные самолеты SSJ–100 (СУХОЙ СУПЕРДЖЕТ 100) и продолжают использоваться в АО ГСС.

Рама с АРМ СБИ в салоне опытного самолета

приборы для дистанционного зондирования Земли

Прецизионные сканирующие устройства: блок двухкоординатной строчно-кадровой развертки БСКР–Т, блок однокоординатной кадровой развертки ПКР–Т для КА серий ЭЛЕКТРО-Л и АРКТИКА-М.

Разрабатывается сканирующее устройство высокого разрешения ПВР–Т для Международной космической станции и однокоординатное устройство малого разрешения ОПМР–Т для КА МЕТЕОР.

Сканирующее устройство БСКР–Т в технологической оснастке

блок накопления данных БНД

Предназначен для сбора, хранения и выдачи данных измерений гелиогеофизических аппаратурных комплексов ГГАК для КА серий МЕТЕОР-М, ЭЛЕКТРО-Л, АРКТИКА-М.

приборы управления воздушно-газовой системой дирижаблей и аэростатов

Решают задачу поддержания перепада давлений между газовыми объемами воздухоплавательных аппаратов и окружающей средой.

Привязной аэростат ПУМА на стоянке в КНР

Приборы индикации состояния воздушногазовой системы в кабине дирижабля АУ–30

ОБРАЗОВАНИЕ, ШКОЛЬНИКИ, ВУЗЫ, ПОПУЛЯРИЗАЦИЯ

Космос интересен всем, но особенно важно поддержать зарождающийся интерес ко Вселенной у школьников и студентов – будущих исследователей и инженеров.

Образование и просвещение – важнейшее направление деятельности ИКИ РАН.

Научно-образовательный центр – центр взаимодействия фундаментальной науки

и образования в Институте, благодаря которому сохраняются преемственность научных школ и интеллектуальный потенциал, в космическую физику приходят новые поколения исследователей. НОЦ ИКИ РАН работает

над созданием новых и поддерживает сложившиеся образовательные технологии, которые формируют классическую схему: школа – вуз – аспирантура – докторантура.

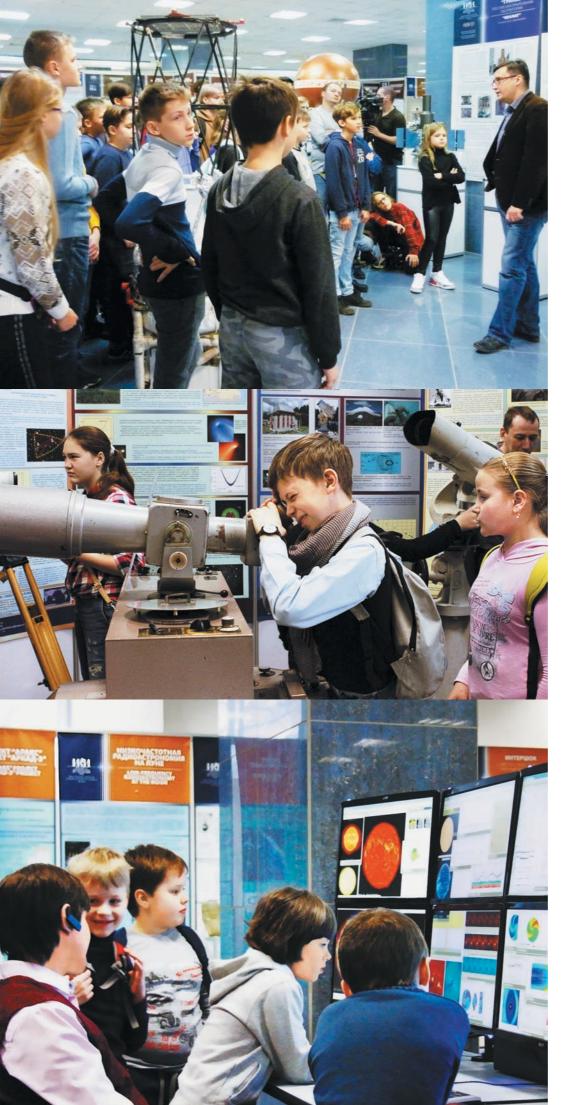
студентам

Базовые кафедры ИКИ РАН в ведущих вузах России:

Московский физико-технический институт (Национальный исследовательский университет): кафедра космической физики

Факультет физики,

Национальный исследовательский университет «Высшая школа экономики»: кафедра физики космоса



Факультет космических исследований, Московский государственный университет им. М. В. Ломоносова: образовательная программа «Методы и технологии дистанционного зондирования Земли»

аспирантам: специальности

01.03.02 Астрофизика и звездная астрономия 01.03.03 Физика Солнца 01.03.04 Планетные исследования 01.04.01 Приборы и методы экспериментальной физики 01.04.02 Теоретическая физика 25.00.34 Аэрокосмические исследования Земли, фотограмметрия

школьникам

«Академический класс в московской школе» Лекции, консультации, проектные работы

конференции

Периодичность: ежегодно Рабочий язык: русский Участники: студенты, аспиранты, молодые ученые

MOCKBA
MULIPAH
MEXIPHAPO

Периодичность: раз в два года Язык конференции: русский Участники: преподаватели школ, кружков, вузов, сотрудники НИИ, популяризаторы науки

выставочный центр ИКИ РАН

Постоянно действующая экспозиция «Космическая наука – взгляд в прошлое, взгляд в будущее», на которой представлены макеты космических аппаратов, научные приборы и результаты исследований.

Выставочный центр используется как площадка для экскурсий, дней открытых дверей, временных выставок, постерных сессий конференций, презентаций новых космических проектов, фестивалей науки, учебных дней и научных каникул в музее, космических квестов.

день открытых дверей ИКИ РАН

Проводится ежегодно в апреле и октябре Экскурсии, лекции, мероприятия

