КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ

T. VIII

Вып. 2

УДК 550.386.2

В. В. Безруких

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ КОНЦЕНТРАЦИИ ЗАРЯЖЕННЫХ ЧАСТИЦ В ПЛАЗМЕННОЙ ОБОЛОЧКЕ ЗЕМЛИ, ВЫПОЛНЕННЫХ НА БОРТУ СПУТНИКОВ «ЭЛЕКТРОН-2» И «ЭЛЕКТРОН-4» 1

Приводятся распределения n_{\pm} в плазменной оболочке Земли, измеренные в утренние и вечерние часы по местному времени по данным «Электрона-2» и «Электрона-4». Отмечается, что большая часть полученных распределений n_{\pm} имеет резкий излом (колено), расстояние от Земли которого зависит от геомагнитной активности.

В последние годы распределение концентраций заряженных частиц с тепловыми энергиями в плазменной оболочке Земли явилось предметом интенсивных исследований как путем наземных наблюдений (Карпентер [1], Ангерами, Карпентер [2]), так и при помощи приборов, установленных на космических аппаратах (Безруких, Грингауз [3], Грингауз и др. [4], Тейлор и др. [5, 6], Сербу, Майер [7, 8], Бинзак [9], Василюнас [10]). В то же время данные о ходе концентрации заряженных частиц на геоцентрических расстояниях $R > 2 \div 3R_3$ в области геомагнитных широт $\phi > 45^{\circ}$ до настоящего времени практически отсутствуют.

В предлагаемой статье представлены некоторые данные о распределении ионной концентрации n_i в плазменной оболочке Земли, положении области резкого спада в распределении n_i — плазмопаузы на геомагнитных широтах $\varphi < 56^\circ$ и изменениях положения плазмопаузы в зависимости от времени суток, полученные при помощи спутников «Электрон-2» и «Электрон-4», на которых было установлено по одной трехэлектродной ловушке интегрального типа. Первые результаты, полученные на «Электроне-2», относящиеся к распределению концентрации тепловых ионов, были даны в работах [3, 4], в которых содержалось также краткое описание методики эксперимента.

Приводимые в настоящей работе данные о распределении ионной концентрации n_i в плазменной оболочке Земли получены с учетом температур ионов, оценки которых были сделаны Грингаузом и др. [11] и Безруких и др. [12] из рассмотрения модуляции токов ловушки, вызванной изменением ориентации ловушки относительно вектора скорости «Электрона-2». При этом предполагалось, что:

1. Наибольшие значения токов были получены при совпадении оси ловушки с направлением движения спутника. В действительности же значения токов были получены при угле между осью ловушки и направлением движения спутника, равном $20-70^{\circ}$, вследствие чего неопределенность в оценке n_i может достигать 2 раз.

8 Космические исследования, № 2

¹ Доклад, представленный на Международный симпозиум по физике магнитосферы (Вашингтон, 3—13 сентября 1968 г.)

2. Потенциал спутника отрицателен и близок к нулю. В пользу разумности этого предположения свидетельствуют весьма малые изменения величин зарегистрированных на спутнике «Электрон-2» токов при входе и выходе спутника из конуса земной тени [3]. Аналогичные оценки потенциала спутника были получены Сербу [13] по данным ловушки, установленной на спутнике ИМП-1. Согласно Тейлору и др. [5], потенциал спутника ОГО-1 изменялся от —10 в в нижней части плазменной оболочки

Рис. 1. Распределения n_i в зависимости от R_3 , полученные при помощи спутника «Электрон-2».

I=31. I 1964 г., $K_{pm}=3_0;\ 2=12. II$ 1964 г., $K_{pm}=4_0;\ 3=14. II$ 1964 г., $K_{pm}=5_0;\ 23=24$ час поместному времени

Рис. 2. Распределения n_i в зависимости от параметра L, полученные при помощи спутника «Электрон-4»:

a-19. VII 1964 г., $K_{pm} = 5_6$; $\delta - 20.$ VII 1964 г., $K_{pm} = 4_6$; e-21. VII 1964 г., $K_{pm} = 3_6$; 18-21 час. по местному времени

Рис. 3. Зависимость положения плазмопаузы от К_{рт}-индекса по данным «Электрона-2» и «Электрона-4»

Земли до 0 в (не меняя знака) в области колена. По оценкам Сагалии и Смиди [45] потенциалы спутников ОГО-4 и ОГО-3, находящихся в магнитосфере Земли, составляли — (1 ÷ 10) в. Сербу и Майер [7] полагают, что потенциал спутника ИМП-2 отличался от нуля на несколько десятых долей вольта и, скорее всего, был положительным. Неопределенность величины собственного за собой ошибку в опре 2 раз.

При помощи спути 31 января по 1 ноября вдоль участков орбит расстояниях до $\sim 6R_3$.

Рис. 4. Положен: в зависимости от

Точки соответств ния — пол

течерним и ночным часа от 0° до 56° и различным Распределение n_i на 1

Сения n_i в зависимости *L*-параметра, полученные яп на геомагнитных шир ные на рис. 1, имеют пла рис. 1, смещается по напмаксимальное значение kниям).

На рис. 2 показаны L-параметра, полученные нитных широтах $\varphi < 30^{\circ}$

Обращает на себя внг 21.VII 1964 г. (так же ка рованных в другие дни 19—20. VII 1964 г. п крпн на некоторых зарегистри иен и близок к нулю. В пользу разумьствуют весьма малые изменения веике «Электрон-2» токов при входе и сени [3]. Аналогичные оценки потенбу [13] по данным ловушки, установо Тейлору и др. [5], потенциал спутнижней части плазменной оболочки

2

от R₃, полученные при помощи спутника рон-2».

, =4₀; 3 - 14.11 1964 г., K_{pm} = 5₀; 23-24 час по-; времени

от параметра L, полученные при помощи. Электрон-4»:

 $K_{pm} = 4_0$; е — 21. VII 1964 г., $K_{pm} = 3_0$; 18—21 час. ту времени

зы от *К_рм-и*ндекса по данным «Электроцектрона-4»

5ласти колена. По оценкам Сагалин в ОГО-1 и ОГО-3, находящихся в ÷ 10) в. Сербу и Майер [7] полагатличался от нуля на несколько десяд положительным. Неопределенность величины собственного потенциала спутника при $U_{cn} \leqslant 0$ может повлечь за собой ошибку в определении ионной концентрации также в пределах 2 раз.

При помощи спутников «Электрон-2» и «Электрон-4» за период с 31 января по 1 ноября 1964 г. было получено около 60 распределений n_i вдоль участков орбит спутников, расположенных на геоцентрических расстояниях до $\sim 6R_3$. Полученные распределения относятся к утренним,

Рис. 4. Положение плазмопаузы в экваториальной плоскости в зависимости от местного времени по данным «Электрона-2» и «Электрона-4»

Точки соответствуют $K_{pm} > 3$, кружка — $K_{pm} < 3$; силошная линия — положение плазмонаузы по Карпентеру [1]

вечерним и ночным часам по местному времени, геомагнитным широтам от 0° до 56° и различным уровням геомагнитной активности.

Распределение n_i на низких широтах. На рис. 1 изображены распределения n_i в зависимости от геоцентрического расстояния R и величины L-параметра, полученные в интервале от 23 до 24 час по местному времени на геомагнитных широтах от $+2^{\circ}$ до -10° . Распределения, показанные на рис. 1, имеют плато (колено), положение которого, как видно из рис. 1, смещается по направлению к Земле при увеличении K_{pm} (K_{pm} максимальное значение K_p -индекса за 24 часа, предшествующие измерениям).

На рис. 2 показаны распределения n_i в зависимости от величины *L*-параметра, полученные при помощи спутника «Электрон-4» на геомагнитных широтах $\varphi < 30^\circ$ в интервале от 20 до 22 час по местному времени.

Обращает на себя внимание тот факт, что плато на распределении 21.VII 1964 г. (так же как и небольшая часть распределений, зарегистрированных в другие дни) выражено менее отчетливо, чем на кривых 19—20. VII 1964 г. и кривых рис. 1. Отсутствие четко выраженного плато на некоторых зарегистрированных распределениях, возможно, связано с

8* 275

тем, что в ряде случаев плато начинается со значений концентрации меньших порога чувствительности аппаратуры (~50 ион/см³) [6].

Кривые 19 и 20. VII 1964 г. характеризуют распределение n_i в вечерние часы в магнитно-возмущенный период. 17.VII началась умеренно сильная магнитная буря, продолжавшаяся до 19. VII, которая вызвала сжатие плазменной оболочки Земли — плазмосферы до L = 4,6, тогда как в дни с умеренной магнитной активностью в интервале от 18 до 21 час по местному времени граница плазмосферы — плазмопауза обычно располагается на L = 5,5.

Рис. 5. Распределения n_i(R₃), полученные на «Электроне-4» в дневные часы:

 $a = 6.X_{3}1964 \text{ r.}, K_{pm} = 5_{0}; \delta = 16.X_{1}964 \text{ r.}, K_{pm} = 2_{0}; e = 17.X_{3}1964 \text{ r.}, E_{Kpm} = 3_{0}$

Обратная корреляция между величинами Крт-индекса и положением плазмопаузы, зарегистрированным в ночные и утренние часы по местному времени, по данным «Электрона-2» иллюстрируется рис. 3, на котором нанесены геоцентрические расстояния плазмопаузы в зависимости от величины Крт-индекса. В тех случаях, когда определение положения плазмопаузы по виду n; распределения оказывалось затруднительным, на график наносилось положение области с $n_i \approx 10^2 \ uoh/cm^3$

Положения плазмопаузы или области с $n_i \approx 10^2 \ uon/cm^3$ в зависимости от местного времени по данным «Электрона-2» и «Электрона-4» показаны на рис. 4.

Представленные на рис. 1-4 экспериментальные данные, являющиеся типичными для низкоширотных распределений n_i, зарегистрированных при помощи спутников «Электрон-2» и «Электрон-4», позволяют сделать следующие выводы:

1. Болышинство распределений n_i, полученных на геомагнитных широтах, не превышающих 45°, имеют хорошо выраженное колено (плато).

2. Колено, или область с $n_i = 10^2 uoh/cm^3$, в тех случаях, когда первое выражено нечетко, в низкоширотных распределениях в ночные, утренние и дневные часы дней с умеренной геомагнитной возмущенностью располагается в плоскости геомагнитного экватора на расстояниях 3,2 < L < 4, а в вечерние часы — с 18 до 21 час по местному времени колено перемещается на расстояния 4,5 < L < 5,5. Указанные результаты хорошо согласуются с суточной зависимостью положения колена, полученной Карпентером [1] и Бинзаком [9].

3. Положение колена обнаруживает сильную обратную корреляцию от величины Крт (максимального значения индекса магнитной возмущенности за 24 часа, предшествующие измерениям).

Распределение n_i на геомагнитных широтах $\phi > 45^\circ$. Подавляющее большинство данных о концентрации заряженных частиц на геоцентрических расстояниях $R > 2R_3$, опубликованных до настоящего времени, относится к области геомагнитных широт $\varphi < 40 \div 45^\circ$.

В связи с этим представляют интерес изображенные на рис. 5 распределения n_i, полученные при помощи «Электрона-4» в дневные часы по

местному времени, у к на геомагнитных шир возмущенности. Особ рис. 5, является плав геоцентрических расст Приведенные на рис. 5 геомагнитных шпротах заряженных частиц з идеализированной моде ное сечение плазмопау;

- 1. D. L. Carpenter. J. (1. J. J. Angenter. J. (
- J. J. Angerami and L Е. В. В. Безруких, К.
- pancrbas. «Hayna», M., 1 K. I. Gringauz, V. V Space Res., 6, 856, 1966. H. A. Taylor, H. C. Bu

- H. A. Taylor et al. 73, G. P. Serbu, E. J. R. Ma
- G. P. Serbu, E. J. R. Ma

- J. N. Binsack. J. Geoph V. M. Vasiliunas. J. (1. К. И. Грингауз, В. В. 245, 1967.
- К. И. Грингауз, В. В. 798, 1967.
 G. P. Serbu. Space Res.,
- 1-. R. Sagalin and M. Sm energy range 0 to 1000 ev

15 R. Sagalin and M. Sm

of rising solar activity ---

ся со значений концентрации меньры (~50 ион/см³) [6].

теризуют распределение n_i в вечерпериод. 17.VII началась умеренно таяся до 19. VII, которая вызвала - плазмосферы до L = 4,6, тогда как стью в интервале от 18 до 21 час по ры — плазмопауза обычно распола-

енные на «Электроне-4» в дневные:

r., $K_{pm} = 2_0$; $e = 17. X_1 1964 [r., \frac{p}{2}K_{pm} = 3_0$

ччинами K_{pm}-индекса и положением ночные и утренние часы по местному иллюстрируется рис. З, на котором я плазмопаузы в зависимости от векогда определение положения плазмоывалось затруднительным, на график ; 10² ион/см³.

сти с $n_i \approx 10^2 \, uoh/cm^3$ в зависимости эктрона-2» и «Электрона-4» показаны

терпментальные данные, являющиеся спределений n_i, зарегистрированных » п «Электрон-4», позволяют сделать

, полученных на геомагнитных широрошо выраженное колено (плато). ион/см³, в тех случаях, когда первое ; распределеннях в ночные, утренние эмагнитной возмущенностью располаватора на расстояниях 3,2 < L < 4,) местному времени колено перемеща-√казанные результаты хорошо соглаюжения колена, полученной Карпен-

ет сильную обратную корреляцию от чения индекса магнитной возмущенізмерениям).

ных широтах $\phi > 45^\circ$. Подавляющее и заряженных частиц на геоцентриикованных до настоящего времени, широт $\phi < 40 \div 45^{\circ}$.

терес изображенные на рис. 5 распреи «Электрона-4» в дневные часы по

местному времени, у которых участки с $n_i < (2-3) \cdot 10^2 \ uoh/cm^3$ получены на геомагнитных широтах $\varphi > 45^\circ$ в условиях умеренной геомагнитной возмущенности. Особенностью распределений n_i, изображенных на рис. 5, является плавный спад величины вплоть до ~ 50 ион/см³ на геоцентрических расстояниях $R > 4R_3$ и геомагнитных широтах $45-56^\circ$. Приведенные на рис. 5 распределения n_i дают основание полагать, что на геомагнитных широтах $\phi > 45^\circ$ реальные распределения концентрации заряженных частиц могут в ряде случаев существенно отличаться от идеализированной модели Карпентера [1], согласно которой меридиональное сечение плазмопаузы совпадает с сечением геомагнитной оболочки.

> Дата поступления 14 марта 1969 г.

> > 277

ЛИТЕРАТУРА

- D. L. Carpenter. J. Geophys. Res., 71, 694, 1966.
 J. J. Angerami and D. L. Carpenter. J. Geophys. Res., 71, 711, 1966.
 B. Безруких, К. И. Грингауз. Сб. «Исследования космического пространства». «Наука», М., 1965, стр. 177.
 K. I. Gringauz, V. V. Bezrukikh, L. S. Musatov, E. K. Solomatina. Space Res., 6, 856, 1966.
 H. Taylor, H. C. Brinton, C. P. Smith, J. Coophys. Res., 60, 4760, 4065.
- 5. H. A. Taylor, H. C. Brinton, C. R. Smith, J. Geophys. Res., 69, 5769, 1965. 6. H. A. Taylor et al. 73, 961, 1968.

- H. A. Taylor et al. 73, 901, 1900.
 G. P. Serbu, E. J. R. Mayer. J. Geophys. Res., 71, 3755, 1966.
 G. P. Serbu, E. J. R. Mayer. Space Res., 7, 527, 1967.
 J. N. Binsack. J. Geophys. Res., 72, 5231, 1967.
 V. M. Vasiliunas. J. Geophys. Res., 73, 2839, 1968.
 K. И. Грингауз, В. В. Безруких, Т. К. Бреус. Космич. исслед., 5, № 2 245, 4067. R. И. Грингауз, Б. Б. Безруких, Т. К. Бреус. Космич. исслед., 5, № 5, 798, 1967.
 К. И. Грингауз, В. В. Безруких, Т. К. Бреус. Космич. исслед., 5, № 5, 798, 1967.
 G. P. Serbu. Space Res., 4, 564, 1965.
 R. Sagalin and M. Smiddy. Results of charged particle measurements in the coordinate of the 4000 av OGO-A Preprint.

- energy range 0 to 1000 ev, OGO-A. Preprint.
 15 R. Sagalin and M. Smiddy. Magnetosphere plasma properties during a period of rising solar activity OGO-III. Preprint.