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The detection of Rossby-like waves on the Sun

Scott W. Mclntosh'™, William J. Cramer?, Manuel Pichardo Marcano?® and Robert J. Leamon®

Rossby waves are a type of global-scale wave that develops In
planetary atmospheres, driven by the planet’s rotation’. They
propagate westward owing to the Corlolis force, and their
characterization enables more precise forecasting of weather
on Earth®3, Desplte the massive reservolr of rotational energy
avallable In the Sun’s interior and decades of observational
Investigation, thelr solar analogue defles unamblguous Identi-
fication**®. Here we analyse a combined set of Images obtained
by the Solar TErrestrial RElations Observatory (STEREQ) and
the Solar Dynamics Observatory (SDO) spacecraft between
2011 and 2013 In order to follow the evolution of small bright
features, called brightpoints, which are tracers of rotation-
ally driven large-scale convection’. We report the detection of
persistent, global-scale bands of magnetized activity on the
sun that slowly meander westward In longitude and display
Rossby-wave-like behaviour. These magnetized Rossby waves
allow us to make direct connections between decadal-scale
solar actlvity and that on much shorter timescales. Monitoring
the properties of these waves, and the wavenumber of the dis-
turbances that they generate, has the potential to yleld a con-
siderable Improvement In forecast capabllity for solar activity
and related space weather phenomena.
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Global-scale equatorial Rossby waves as an
essential component of solar internal dynamics

Bjérn Léptien'?, Laurent Gizon

123* Aaron C. Birch', Jesper Schou

1, Bastian Proxauf,

Thomas L. Duvall J¥', Richard S. Bogart* and Ulrich R. Christensen’

The Sun's complex dynamics is controlled by buoyancy and
rotation in the convection zone. Large-scale flows are domi-
nated by vortical motions’ and appear to be weaker than
expected in the solar interior’. One possibility Is that waves
of vorticity due to the Corlolis force, known as Rossby waves®
or r modes®, remove energy from convection at the largest
scales®, However, the presence of these waves In the Sun is
still debated. Here, we unambiguously discover and charac-
terize retrograde-propagating vorticity waves In the shallow
subsurface layers of the Sun at azimuthal wavenumbers below
15, with the dispersion relation of textbook sectoral Rossby
waves. The waves have lifetimes of several months, well-
defined mode frequencies below twice the solar rotational
frequency, and elgenfunctions of vorticity that peak at the
equator. Rossby waves have nearly as much vorticity as the
convection at the same scales, thus they are an essential com-
ponent of solar dynamics. We observe a transition from tur-
bulence-like to wave-like dynamics around the Rhines scale®
of angular wavenumber of approximately 20. This transition
might provide an explanation for the puzzling deficit of kinetic
energy at the largest spatial scales.

several years. We use a six-year-long time series of intensity images
of the solar photosphere from the Helioseismic and Magnetic
Imager (HMI) instrument aboard the Solar Dynamics Observatory
(SDO) spacecraft’. These full-disk images are recorded at a cadence
of 455 and a spatial resolution that is high enough to resolve the
photospheric granules, which are prominent convection features
1,500km in size. Granules extend from the solar surface down to
a few 100 km below the solar surface and can be used as tracers of
the larger-scale horizontal flows they are embedded in. We derive
the two horizontal components of the flow velocity at the solar
surface by following the motions of granules between consecutive
pairs of HMT intensity images every 30min (see Methods). The
radial vorticity of the flows is then computed in a frame rotating
at £2_J/2n=453.1nHz, which is the mean solar surface equatorial
rotation rate for 2010-2016 inferred from f-mode helioseismology®
using SDO/HMI observations.

Figure 1 shows maps of the horizontal vector velocity (arrows)
and the radial component of the vorticity (background colours) for
three consecutive solar rotation periods after applying a Gaussian
spatial filter with standard deviation (s.d.) of 7°. These maps exhibit
a complex flow pattern with many examples of vortical flow fea-



Presentation Outline

MHD equations in shallow water approximation with external
vertical magnetic field

Beta plane approximation

Linear theory, weakly nonlinear theory, parametric
instabilities

2D B-plane MHD turbulence, zonal flows, anisotropic scale in
MHD turbulence



MHD Shallow Water Equations
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Linear Waves. Magnetostrophic and magneto-

Poincare modes

Dispersion relation:
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In nonrotating case where f =0 :

ng2 +( ) - magnetogravity wave

(—0) - Alfven wave



Phase-matching Conditions

Possibility of three-wave interaction with isotropic o(K)

. @ =0, + @
Necessary conditions 1 2 3
K, =k,+K,
Interaction is allowed: Interaction is forbidden:
AC&)
'\\ ///




Multiscale Asymptotic Method

Solution in a form of a series in the small parameter:

h h, h, h,
V, 0 Vi, Vo u, - stationary solution
u=|Vv, |=| 0 |+e|l Vv, |[+&°| Vy, |=U, +eu, +£%U,
B, 0 B, B,, u, - linearsolution
B, 0 B,, B,, o0 b o
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Compatibility condition:

Hu, = f(UO,UO)-l-Ra

A or z — eigenvector of adjoint for H matrix

(z, f(uy,u)+R—2)=0
or



Equations for the Amplitudes of Interacting Waves

Equations for three magneto-Poincare waves:

a—7+a1—67/ +b* Oy _ = flapf

oT, OX, oY,
6_a+a2 o b28_a_ 255"
oT, OoX, oY,
B g2 B 2 OB ta
oT, OoX, oY,
o, ﬁ, Y - amplitudes of interacting magneto-Poincare waves
(T, X1,Y)) - “slow” variables
a,b', f' _ constants are determined by the initial conditions (K, K, K3, f5,9,H, By)

are different for every case of three-waves interactions:

Three magneto-Poincare waves

Three magnetostrophic waves

» Two magneto-Poincare waves and one magnetostrophic wave
* Two magnetostrophic waves and one magneto-Poincare wave



Decay Instabilities

Magneto-Poincare wave decays into two magneto-Poincare waves:

*

0a 4 92 9% 2 9% _ 2, g
oT, | X, oY,

B 5B 5B
6T, X, o,

y =y, =const - amplitude of pump wave

3 *
Yok

General solution: (Zj:(;"}exp(i(m -K, X -K,Y))

0

Growth rate: = /‘ f2f 3‘7/0 >0
Parametric Amplifications

Initial condition ¢, 8, >>y leads to the equation

a—7/+a1 Oy +b16—7/= fla, S,
oT, X, = oY,

General solution: ¥ =7, eXp((QT, - K, X, + K Y}))

G th rate:
row rate F:‘fl‘aoﬂo>o



Beta Plane Approximation

Corilois parameter :

f =2Qsin 8 ~ 2Qsin g, + 2Q(6 - 6,) cos 9, = f, + py

y f:fo"',By
Z

Q) -angularvelocity @ - latitude

Shallow water equations in beta plane approximation:
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Magneto-Rossby waves
Dispersion relation:

o' -0’ (1] +ng2+2( j)-l-(()gHﬂk +(ij(ghk2 (IE—)I)):O

Rossby mode ( w<< f):

2 2 2
a)z—(BO/H) (ghk”+(B,/H)') phase speed is westward

ghpk,

Zaqgarashvili T.V., Oliver R. et al. 2007
Klimachkov D.A., Petrosyan A.S., 2017



Instabilities of Rossby waves

Decay Instability

Yy =Y, =COoNnst - amplitude of pump wave

0x L 2 0% 1204 _ g2 g
oT, oX, oY,

A

| solution: (“j—( ]ex ((QT —K_X —K_Y))
General solution: B = B, P X y

%+a3%+b3%: fiy.a
ot oX, oy,
Growthrate: T = 1/‘ f 2H f 3‘70 >0 £27 = 123k, Ky kg, T, 8,9, H, By)

Parametric Amplification

Initial condition &y, 8, >> )  leads to the equation

6—7+a1 o +b® o7 = f3a,p,
oT, -~ oX, oy,

General solution: ¥ =7, eXp(I(QT, — K, X, + Kle))

GrOWth rate: F :‘fl‘aOﬂO >O fl = fl(k11k21k31 fOiﬂ!Q’ HIBO)



Damping Terms and Threshold
Amplitudes

Decay Instability

oo 92 oa b oa

oT,  oX, oY,

%+a3 &b +b’ &b
o, o oox, oY,

cr \/772773 > 3l er
Critical amplitude: Yo = Growth rate: F:J‘f Hf 7o >0

7

+1,0 = fZVoﬂ*

n,0,m, - damping terms
+1,0 = f37/oa*

Parametric Amplification

Oy .10y 1 Oy 1
+a +b +ny =1« - dampi m
T, ox, 7, my oo my damping ter

Critical amplitude: (a0 f3p)" = % Growth rate: ' = ‘ f 1‘(050/30)(:r >0



2D B-plane magnetohydrodynamic equations

wy =], w) + Y, +J(A,AA) — BoAA, + vAw + F
Ae =], A) + By + pAA

w = —AY

w - vorticity J(a,b)=a,b, — a,b, -Jacobian
Y - stream function
A - magnetic potential v - kinematic viscosity

1 - magnetic diffusivity
f - Rossby parameter

B, - toroidal component of F -forcing
magnetic field



Zonal flows in decaying 2D B-plane
hydrodynamic turbulence
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Zonal flows in decaying B-plane 2D
magnetohydrodynamic turbulence

1

1024

408

0 — 0
Ekin — Emag

B =10

02 » Time dynamics of
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Magnetic field in decaying 2D B-plane
magnetohydrodynamic turbulence

1024
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* Magnetic field
lines are aligned
perpendicular to
the zonal flows
because of the
effect of magnetic
freezing

A 1024
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Mean zonal velocity u(y)
(a)

- Decaying 2D B-plane
magnetohydrodynamic
turbulence
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T Zinyakov T.A. and Petrosyan A.S., 2018 (submitted)



Anisotropic scale in magnetohydrodynamic

turbulence
The eddy turnover time: The dispersion relation for Rossby waves:
_2m _ Bky
KT Uk CT T2

1 S :
— = Wgurp = WRosshy —=> kg = T Rhines Scale

Tk
The magnetic eddy turnover time: The dispersion relation for Rossby waves:
TM:lkUZZnU w__&
k= B2 B2k k2

1 / U
M = Wmag = WRosshy T——p  kj = % - Anisotropic scale in
k

magnetohydrodynamic
turbulence

T

U - root-mean-square velocity

B - root-mean-square magnetic field
Zinyakov T.A. and Petrosyan A.S., 2018 (submitted)



Spectrum of decaying 2D magnetohydrodynamic

turbulence
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Zinyakov T.A. and Petrosyan A.S., 2018 (submitted)



Zonal flows in 2D B-plane
hydrodynamicturbulence
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Zonal flows in 2D B-plane magnetohydrodynamic

turbulence in toroidal magnetic field
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2D B-plane magnetohydrodynamic
turbulence in toroidal magnetic field
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Spectrum of 2D B-plane magnetohydrodynamic
turbulence in toroidal magnetic field
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* The inverse cascade is halted

by the presence of the
magnetic field

1 * There isn’t transfer of energy

from forced scales to large
scales

Zinyakov T.A. and Petrosyan A.S., 2018 (submitted)



Conclusions

Rotating MHD shallow water equations in external magnetic field, beta
plane approximation

Linear waves, nonlinear amplitudes equations in Shallow Water
Magnetohydrodynamics

Parametric instabilities in Shallow Water Magnetohydrodynamics
Beta plane magnetohydrodynamic turbulence, zonal flows

Anisotropic scale in magnetohydrodynamic turbulence
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Numerical Simulation

Square box of size 2 it * 2 t with periodic boundary
conditions

1024*1024 collocation points in space
Pseudospectral method

Dealiazing according to the 2/3 rule

CUDA Parallel Technology with using CUDA C++
Nvidia Tesla k40



