On accuracy of an asymptotic formula for the phase of arrival at a resonance in slow-fast Hamiltonian systems

Y. Gao¹, A. Neishtadt^{1,2}, A.Okunev³

¹Loughborough University, Loughborough, UK ²Space Research Institute, Moscow, Russia ³Pennsylvania State University, State College, US **Motivation:** motion of a charged particle in a background magnetic field and a high-frequency wave exited in a plasma

A model problem: one-frequency slow-fast Hamiltonian system

Canonically conjugate variables:
$$(I, arphi), \; (y, arepsilon^{-1} x) \;$$
 , $\; I \in \mathbb{R}^1, arphi \in \mathbb{S}^1$ $0 < arepsilon \ll 1$

Hamilton's function: $H(I, \varphi, y, x, \varepsilon) = H_0(I, y, x) + \varepsilon H_1(I, \varphi, y, x, \varepsilon)$

Hamilton's equations:

$$\begin{split} \dot{I} &= -\varepsilon \frac{\partial H_1}{\partial \varphi}, \quad \dot{\varphi} = \frac{\partial H_0}{\partial I} + \varepsilon \frac{\partial H_1}{\partial I}, \\ \dot{y} &= -\varepsilon \frac{\partial H_0}{\partial x} - \varepsilon^2 \frac{\partial H_1}{\partial x}, \quad \dot{x} = \varepsilon \frac{\partial H_0}{\partial y} + \varepsilon^2 \frac{\partial H_1}{\partial y} \end{split}$$

Thus, I, y, x are slow variables, φ is the fast phase.

The averaged system (an adiabatic approximation):

$$\dot{I} = 0, \quad \dot{y} = -\varepsilon \frac{\partial H_0(I, y, x)}{\partial x}, \quad \dot{x} = \varepsilon \frac{\partial H_0(I, y, x)}{\partial y}$$

The (unperturbed) frequency of the fast phase arphi is

$$\omega_0(I, y, x) = \frac{\partial H_0(I, y, x)}{\partial I}$$

The frequency vanishes on a resonant surface $_{T}\{I = a(y, x)\}$.

We assume that the trajectory of the averaged system transversally crosses the resonant surface.

Dynamics near the resonant surface

Introduce the normalised distance from the resonant surface $P = (I - a(x, y))/\sqrt{\varepsilon} + O(\sqrt{\varepsilon})$ and rescale time to $\theta = \sqrt{\varepsilon}t$.

Expand Hamiltonian in $O(\sqrt{\varepsilon})$ – neighbourhood of the resonant surface:

- dynamics of y, x is approximately described by the Hamiltonian $\sqrt{\varepsilon}H_0(a(y,x),y,x)$
- dynamics of P, φ is approximately described by the Hamiltonian

$$\mathcal{E}(P,arphi,y,x) = rac{1}{2}lpha(y,x)P^2 + H_1(a(y,x),arphi,y,x,0) + b(y,x)arphi$$

that depends on y, x .

Pseudophase is related to value of Hamiltonian \mathcal{E} at P = 0 (i.e. on the resonant surface); \tilde{H}_1 is the purely periodic part of H_1 at $\varepsilon = 0$.

Improved adiabatic approximation

Canonically conjugate variables: $(J, \psi), (\eta, \varepsilon^{-1}\xi), J \in \mathbb{R}^1, \psi \in \mathbb{S}^1$ Hamilton's function: $\mathcal{H}(J, \eta, \xi, \varepsilon) = H_0(J, \eta, \xi) + \varepsilon \overline{H}_1(J, \eta, \xi)$

Hamilton's equations

$$\dot{J} = 0, \quad \dot{\psi} = \frac{\partial H_0}{\partial J} + \varepsilon \frac{\partial \bar{H}_1}{\partial J}$$

 $\dot{\eta} = -\varepsilon \frac{\partial H_0}{\partial \xi} - \varepsilon^2 \frac{\partial \bar{H}_1}{\partial \xi}, \quad \dot{\xi} = \varepsilon \frac{\partial H_0}{\partial \eta} + \varepsilon^2 \frac{\partial \bar{H}_1}{\partial \eta}$

Here \overline{H}_1 is the average of H_1 over φ at $\varepsilon = 0$. **Initial conditions (**for t=0). For the exact system: For improved adiabatic approximation: $(I_0, \varphi_0, y_0, x_0)$ $(J_0, \psi_0, \eta_0, \xi_0) = (I_0, \varphi_0, y_0, x_0) + O(\varepsilon)$

Additional notation

- Consider solution of the perturbed system with initial data (I_0, φ_0, y, x_0) . Denote, for *slow time* $\tau = \varepsilon t$:
- $I_0, \eta(\tau), \xi(\tau)$ solution in adiabatic approximation,
- au_* slow time of its arrival at resonance, $\ \omega_0\left(I_0,\eta(au),\xi(au)
 ight)=0$

$$y_* = \eta(\tau_*), x_* = \xi(\tau_*)$$

 $J_0, \eta_a(\tau), \xi_a(\tau)$ - solution in improved adiabatic approximation, $au_{*,a}$ - slow time of its arrival at resonance, $\omega_0(J_0, \eta_a(\tau), \xi_a(\tau)) = 0$ $\omega_1(I, y, x) = \partial \overline{H}_1(I, y, x) / \partial I$ - frequency adjustment.

Formula for (pseudo)phase at arrival to resonance

For simplicity of formulations, assume that there are no equilibria at the phase portraits of the system near the resonance. Denote:

 φ_e - value of the phase at arrival at the resonance

 $\Xi_e = \Xi(arphi_e; y_*, x_*)$ - the corresponding of pseudophase

$$2\pi\Xi_e = \varphi_0 + \frac{1}{\varepsilon} \int_0^{\tau_{*,a}} (\omega_0 \left(J_0, \eta_a(\tau), \xi_a(\tau)\right) + \varepsilon \omega_1 \left(J_0, \eta_a(\tau), \xi_a(\tau)\right) d\tau + O(\sqrt{\varepsilon})$$

 $\begin{array}{ll} \text{The estimate of the error is optimal.}\\ \text{Recall that} \quad \Xi(\varphi;y,x) = \frac{1}{2\pi} \left(\varphi + \frac{\tilde{H}_1(a(y,x),\varphi,y,x)}{b(y,x)} \right) \end{array}$

Analytical example.

Consider a Hamiltonian that depends on the slow time:

$$H = \frac{1}{2}(I - \tau)^2 + \varepsilon u(\tau)\sin\varphi, \quad \tau = \varepsilon t$$

where $\tilde{u}(\tau)$ is a smooth function, u(0) = 0. Equations of motion are $\dot{I} = -\varepsilon u(\tau) \cos \varphi, \ \dot{\varphi} = I - \tau$

In this example, $\tau_* = \tau_{*,a} = I_0$. One can show that

$$2\pi(\Xi_e - \Xi_{teor}) = \sqrt{\varepsilon}u'(\tau_*)K + O(\varepsilon),$$
$$K = \int_{-\infty}^{\varphi_a} \frac{\sin\varphi + u(\tau_*)\sin\varphi_a\cos\varphi}{\sqrt{2(u(\tau_*)\sin\varphi_a + \varphi_a - u(\tau_*)\sin\varphi - \varphi)}}d\varphi$$

where φ_a is a root of equation $I_0^2/(2\varepsilon) + \varphi_0 = u(\tau_*) \sin \varphi_a + \varphi_a$. Value *K* is not identically 0. Thus, the estimate $O(\sqrt{\varepsilon})$ of the error term in the asymptotic formula for the pseudophase is optimal.

Numerical test

Consider a Hamiltonian that depends on the slow time:

$$H = \frac{1}{2}(I - \tau^{2})^{2} + \varepsilon(\frac{1}{2} + I)\sin\varphi.$$

A numerical check of accuracy of the formula for pseudophase at the resonance gives the slope of the fit function 0.4977.

Scheme of the proof

Consider the function:

1

$$E = \frac{1}{2\varepsilon}\alpha(y,x)(I - a(y,x))^2 + H_1(I,\varphi,y,x,\varepsilon) + b_{*,a}\varphi$$

This is an approximate first integral of motion near the resonant surface. Here $b_{*,a} = b(\eta(\tau_{*,a}), \xi(\tau_{*,a}))$. Calculate the time derivative of this function along solution and take the integral of this derivative from 0 to the time t_e of arrival into resonance. Compare two expressions of this integral. On the one hand

$$\int_0^{t_e} \dot{E}dt = E|_{t=t_e} - E|_{t=0}$$

$$=H_1(I_e, \varphi_e, y_e, x_e, \varepsilon) + b_{*,a}\varphi_e - \frac{1}{2\varepsilon}\alpha(y_0, x_0)(I_0 - a(y_0, x_0))^2 - H_1(I_0, \varphi_0, y_0, x_0, \varepsilon) - b_{*,a}\varphi_0.$$

On the other hand, we should integrate from 0 to
$$t_e$$
 the expression

$$\dot{E} = \frac{1}{\varepsilon} \alpha(y, x) (I - a(y, x)) (\dot{I} - \varepsilon a'(y, x)) + \frac{1}{2} \alpha'(y, x) (I - a(y, x))^2 + \frac{\partial H_1}{\partial I} \dot{I} + \frac{\partial H_1}{\partial \varphi} \dot{\varphi} + \frac{\partial H_1}{\partial y} \dot{y} + \frac{\partial H_1}{\partial x} \dot{x} + b_{*,a} \dot{\varphi}$$

Prime denotes derivative with respect to τ .

Many terms are cancelled near the resonance in the principal approximation. This simplifies estimates in a perturbation theory. Comparison of two expressions for the integral leads to the final result.

References

1. Artemyev, A., Neishtadt, A. and Vasiliev, A., Mapping for Nonlinear Electron Interaction with Whistler-Mode Waves, *Phys. Plasmas*, 2020, vol. 27, p.042902.

2. Gao, Y., Neishtadt, A. and Okunev, A., On Phase at a Resonance in Slow-fast Hamiltonian Systems, Regular and Chaotic Dynamics, 2023, vol. 28, pp 581--608.

Спасибо!