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Motivation: motion of a charged particle in a background magnetic
field and a high-frequency wave exited in a plasma
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A model problem: one-frequency slow-fast Hamiltonian system

Canonically conjugate variables: (I,¢), (y,e 'z) , T€R, pcS!
OD<exk1

Hamilton’s function: H (I, ,y,x,e) = Ho(I,y,z) +cH1(I, p,y,,€)

Hamilton’s equations:

i 0H SO:aHO _OH
Op oI oI’
OHy  ,0H,; 0Hy = ,0H;
y:—ea—x—e B azzeay 'gﬁ—y

Thus, I, Yy, x are slow variables, is the fast phase.



The averaged system (an adiabatic approximation):

: Hy(! Ho(l
[:()7 y:—Ea O( 7y733)7 55288 O( 7?/733).
ox oy

The (unperturbed ) frequency of the fast phase @ is

a[—I()(Iv Y, CE’)
I _
WO( Y, :C) o1
The frequency vanishes on a resonant surface {1 = a(y, ) }.
We assume that the trajectory of the / - /} o
averaged system transversally /¢ \
crosses the resonant surface. 1 5
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Dynamics near the resonant surface

Introduce the normalised distance from the resonant surface
P = (I—a(z,y))/ve+O(e) and rescale timeto 6 = /et .

Expand Hamiltonian in O(1/e)— neighbourhood of the resonant surface:

= dynamics of ¥, is approximately described by the Hamiltonian
\/EH()(CL(y, x)a Y, x)

= dynamics of P, is approximately described by the Hamiltonian

1
E(P,p,y,z) = —a(y,z)P? + Hi(a(y, z), »,y,,0) + by, z)p
2

that depends on vy, @ .



Phase portraits of P, » for frozen ¥,Z
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Pseudophase is related to value of Hamiltonian £ at P = ( (i.e. on the
resonant surface); H, is the purely periodic part of H;ate = 0.
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Improved adiabatic approximation

Canonically conjugate variables: (j ), (n,e71€), J eR, 9 eS?

Hamilton’s function: H(J,n,§,€) = Ho(J,n,€) + eH1(J,n,€)
_amito;’s_e(()quati:;ni OH, Igaﬁl
Y Y )
. 88HO 52 8H1 g - E:aHO | 6‘2 aHl
LT: oc "~ “an T oy

Here ﬁlis the average of H1 over  at e = 0.
Initial conditions (for t=0).
For the exact system: For improved adiabatic approximation:

(107 Y0, Yo, SIZ‘()) (J07 2pOa To, 50) — (I()a Y0, Yo, ZE‘()) - O(E)



Additional notation

Consider solution of the perturbed system with initial data (g, o, ¥ Zg).

Denote, for slow time T = €t :

Iy, n(T), &(T) - solution in adiabatic approximation,

T+ - slow time of its arrival at resonance, Wwq (IQ, 77(7'), f(T)) = (
Yo = 0(Te)s o = E(Toc)

Jo, Na(T), Ea(T)- solution in improved adiabatic approximation,

7->l<,a - slow time of its arrival at resonance, W0 (J07 Ta (7')7 fa (7')) =0

wi(I,y,x) = OH,(I,y,x)/0I -frequency adjustment.



Formula for (pseudo)phase at arrival to resonance

For simplicity of formulations, assume that there are no equilibria at
the phase portraits of the system near the resonance.

Denote:
Pe - value of the phase at arrival at the resonance

= = E(gpe; (T :13*) - the corresponding of pseudophase

275, = g0+ = [ (w0 (Jos (7). () + w1 (Jou (7). a() dr + O(VE)

0

The estimate of the error is optimal.

= 1 ﬁlay,x,gp,y,az
Recallthat  =(p:y, z) = = (90 | ( (b(y )g;) ))




Analytical example.

Consider a Hamiltonian that depends on the slow time:

1
H = 5([—7‘)2 + eu(7)siny, T =c¢t

where u(t) is a smooth function, u(0) = 0. Equations of motion are
I = —cu(rt)cosyp, op=1—1
In this example, 7.= 71, ,=1,. One can show that

27(Ze — Beor) = Veu' (1) K + O(e),
o /% sin p 4 u(7y ) sin @, cos @
V2 (u(T:) sin o, + 94 — u(Ty) sin p — @)
where ¢, Is a root of equation [O/(Qé‘) + Yo = U(T*) SIN Yq + Pq -

Value K is not identically 0. Thus, the estimate O(+/¢) of the error
term in the asymptotic formula for the pseudophase is optimal.

dp




Numerical test

Consider a Hamiltonian that depends on the slow time:

1 1
H = 5([—7'2)2 —|—8(§ + I)sinp.
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A numerical check of accuracy of the
formula for pseudophase at the
resonance gives the slope of the fit
function 0.4977.
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Scheme of the proof

Consider the function:

1

E = 2—ga(y,x)(] —a(y,z))” + Hi(I,0,y,T,€) + by o

This is an approximate first integral of motion near the resonant surface.

Here by o = b(N(Tx.0),&(Tx.o)). Calculate the time derivative of this
function along solution and take the integral of this derivative from 0 to

the time t, of arrival into resonance. Compare two expressions of this
integralt. On the one hand

/ Fdt = E|,_, — Eli=
0

1
=H; (Iea Pe, yeaajeag) + b*,agpe - Z_ga(yov 330)(]0 o a/(y(), xo))z

— Hi (o, v0,Y0, 0, €) — bs.a0-



On the other hand, we should integrate from 0 to t, the expression
.1 : 1
k :ga(y,x)(f o CL(ZI/,ZE‘))(I - 8&/(y,£€)) T 50/(?%33)([ o a(y,x))Q
oH,. O0H, . O0H; OH; . ,
| I+ | | bs.a
o7 Do P T+ Ox,ap

Prime denotes derivative with respect to 7.

Many terms are cancelled near the resonance in the principal
approximation. This simplifies estimates in a perturbation theory.
Comparison of two expressions for the integral leads to the final result.
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