В. А. Гордин

НИУ «Высшая школа экономики» & ФБГУ «Гидрометцентр России» & МФТИ

Коэффициент турбулентного обмена лучше брать комплексным. По данным зондирования с высоким разрешением атмосферы Земли (модификация модели ветра в пограничном слое Акерблома — Экмана)

при участии Ф. Л. Быкова

26 ноября 2024 г

Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры Д.И.Менделеев Традиционная модель Акерблома - Экмана описывает поведение ветра в пограничном слое (ПС) атмосферы или океана на вращающейся планете:

$$\begin{cases} \frac{d}{dz} \left[k(z) \frac{du}{dz} \right] = -l \left(v - v_g \right), \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), \end{cases}$$
(1)

где u(z), v(z) - горизонтальные компоненты ветра, u_g , v_g - компоненты геострофического ветра на верхней границе ПС. Вертикальная переменная $z \in [0, H_{\text{max}}]$ - высота над земной поверхностью, H_{max} - высота ПС, $l = \sin \varphi \times 1.45842 \times 10^{-4}$ / c - параметр Кориолиса, φ географическая широта, k(z) > 0 - коэффициент турбулентного обмена. Система (1) сингулярна, если и только если $k(z_0) = 0$ при некотором $z_0 \in (0, H_{\text{max}})$.

Если в системе (1) k(z) = const, то угол поворота ветра в ПС составляет 45°.

Фактическое (по набюдениям) распределение углов поворота ветра в ПС

А согласно классическим работам: *Ekman, V.W.* (1905) On the influence of the Earth's rotation on ocean currents. Ark Mat Astron Fys 2(11), 1-53; *Akerblom F*. Rechercher sur les courants le plus bas de l'atmosphere au-dessus de Paris. Nova Acta, Regic Societatis Scientarum. Upsala Ser. IV, V.2, №2, 1908, 203-251 ветер должен поворачиваться на 45° . Подберем k(z), согласуя с данными наблюдений.

Первая стадия работы: оптимизация k(z) в классе положительных функций.

Вторая стадия: расширение области оптимизации.

Уравнение (1) инвариантно относительно действия группы вращений вокруг вертикальной оси: **SO(2)**. Группа **SO(2)** коммутирует только с кососимметричными и скалярными операторами. Следовательно, можно без потери этой инвариантности рассмотреть более общую систему ОДУ:

$$\begin{cases} \frac{d}{dz} \left[\frac{\gamma(z)\sin(\varphi)\frac{dv}{dz} + k(z)\frac{du}{dz}}{dz} \right] = -l\left(v - v_g\right), \\ \frac{d}{dz} \left[k(z)\frac{dv}{dz} - \frac{\gamma(z)\sin(\varphi)\frac{du}{dz}}{dz} \right] = l\left(u - u_g\right), \end{cases}$$
(2)

где второй коэффициент турбулентного обмена $\gamma(z)$ играет роль регуляризатора для (1): ведь даже, если k(z)=0, система (2) не станет сингулярной. Множитель $\sin(\varphi)$ здесь добавлен в уравнения (2), чтобы согласовать результаты наших численных экспериментов с данными из Южного полушария.

Комплексная форма модели

Перепишем (2) в комплексной форме: w = u + iv, $w_g = u_g + iv_g$ и $\kappa = k - i\gamma \sin(\varphi)$

$$\frac{d}{dz} \left[\kappa(z) \frac{dw}{dz} \right] = il \left(w - w_g \right).$$
(3)

Если $\kappa(z) = const$, то поворот ветра равен $\arg \sqrt{\frac{i}{\kappa}} = \frac{1}{2} \operatorname{arctg} \frac{k}{\gamma \sin \varphi}$.

<u>Средние наблюдаемые углы поворота ветра в погранслое (10 – 20⁰</u>) соответствуют отношению:

$$\gamma \sin \varphi / k \approx 1.2 - 2.7$$
.

Новое слагаемое оказывается больше старого!

Задача квадратичного программирования (ЗКП)

Чтобы уменьшить порядок дифференцирования, проинтегрируем ур. (2) по z:

$$\kappa(z)\frac{dw}{dz} = -\psi + c \quad , \tag{4}$$

где для каждого профиля $C \in \mathbb{C}$ - константа интегрирования, а векторная (комплексная) функция $\Psi(z)$ удовлетворяет дифференциальному уравнению и нормировке:

$$\frac{d\psi}{dz} = \mathrm{i}l(w_g - w), \quad \int_0^H \psi(z)dz = 0.$$

Ищем $\mathcal{K}(Z)$ как решение ЗКП: минимизируем среднюю относительную невязку (4) по j=1,..., *N* вертикальным профилям:

$$L(\kappa(z), \{c_j\}) = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{W_j} \int_{0}^{H_j} \left| \kappa(z) \frac{dw_j}{dz} + \psi_j(z) - c_j \right|^2 dz \to \min_{\kappa(z), \{c_j\}},$$
(5)

множители $W_j = \int_{0}^{H_j} |\psi(z)|^2 dz$ включены в нормировку *L*. Тогда минимум $\min_{c_j} L(0,c_j) = 1$.

Пусть 0 < Λ < 1 - минимум функционала (5). Значение 100% (1 – Λ) интерпретируется как средний коэффициент детерминации, см. Таблицу 2.

Данные

Использованы данные 26142 радиозондов, удовлетворяющих условиям:

1.Заявленная точность измерения скорости 0.1m/s (а не 1 узел).

2. Хорошее среднее вертикальное разрешение (более 25 точек в слое 0-1000 m).

3. Высота ПС $H_j > 100m$.

4. Вариация ветра в ПС больше, чем 2.5 m/s.

5. Высота первого измерения профиля не больше, чем 5*m*.

Географическое расположение использованных аэрологических станций

Расположение 111 станций, которых учитывались С данные радиозондирования Крестиком 28 показаны "интенсивных станций", с которых усвоено МНОГО (более 400 данных запусков) в нашем архиве

Высота ПС

Использовалась стандартное определение высоты ПС H_j - минимальный корень уравнения:

$$\Theta_{j}(H_{j}) = \Theta_{V,j}(0), \qquad (5)$$

где Θ - потенциальная температура, а Θ_V - виртуальная потенциальная температура.

|--|

Название	Условие	Число	Высота ПС H_{j}
Bce	нет	26142	671±516m
Глубокий	$H_{j} > 1000m$	8462	1592±454m
Мелкий	$H_{j} < 500m$	12051	270±115m
Устойчивый	$\forall z \in [0; H_j] Ri(z) > 0.3$	2622	201±105m
Неустойчивый	$\exists z_0 \in \left[0; H_j\right] Ri(z_0) < 0.2$	22584	742±517m

Число Ричардсона

Число Ричардсона *Ri* - <u>безразмерная функция</u> высоты *z*:

$$Ri(z) = \frac{g}{\Theta} \frac{\frac{\partial \Theta}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2}.$$
 (6)

Значения $Ri > Ri_c = 0.25$ соответствуют устойчивой стратификации, $Ri < Ri_c$ - неустойчивой, а Ri < 0 строго неустойчивой стратификации атмосферы (в столбе существует температурная инверсия.

Модельные углы поворота для оптимальных: вещественного k и комплексного $\kappa = H \tilde{\kappa} (z/H)$

Альтернативные параметризации КТО

Оптимальные КТО $\tilde{\kappa}(S_2)$ в зависимости от модуля сдвига ветра $S_2 = shear(z) =$ $= \sqrt{(u(z) - u_g)^2 + (v(z) - v_g)^2} (m \cdot s^{-1})$: здесь вещественная часть $\tilde{k}(S_2)$ (кривые 1, 3); мнимая часть $\tilde{\gamma}(S_2)$ (кривые 2, 4) устойчивые профили (кривые 1, 2), неустойчивые профили (кривые 3,4)

При оптимальных КТО		K	$k > 0, \gamma = 0$	$\tilde{\kappa}$	$\tilde{k} > 0, \gamma = 0$	Отношение
Случаи	Аргумент(ы) S	Средний коэффициент детерминации			$1 - \Lambda (\tilde{\kappa} \in \mathbb{C})$	
		$100\%(1-\Lambda)$			$\overline{1 - \Lambda\left(\tilde{\kappa} \in \mathbb{R}\right)}$	
Bce		38,5%	11,7%	48,3%	13,8%	3,5
Глубокие	Относительная	34,6%	7,7%	35,0%	8,0%	4,5
Тонкие	высота S ₁	62,3%	17,4%	72,6%	20,9%	3,3
Устойчивые		65,9%	10,2%	77,5%	11,6%	7,1
Неустойчивые		38,9%	12,3%	48,2%	14,0%	3,5
Bce		37,6%	12,2%	46,3%	15,1%	3,1
Глубокие	Модуль сдвига	29,2%	8,3%	29,8%	8,6%	3,4
Тонкие	Betpa S	59,9%	18,2%	67,7%	22,4%	3,0
Устойчивые		59,7%	11,6%	67,8%	13,5%	5,5
Неустойчивые		39,1%	12,6%	46,7%	15,3%	3,0
Bce		24,4%	11,4%	34,1%	12,6%	2,7
Глубокие	Число Кі	29,2%	7,4%	29,9%	7,5%	4,1
Тонкие		36,0%	16,8%	43,0%	19,8%	2,1

Устойчивые		33,0%	9,7%	39,4%	10,3%	4,0
Неустойчивые		28,6%	11,8%	35,3%	12,8%	2,7
Bce	Относительная	41,2%	12,7%	53,4%	15,4%	3,4
Глубокие	высота S ₁ и	35,2%	8,7%	35,7%	9,1%	4,0
Тонкие		65,2%	18,9%	76,7%	22,9%	3,3
Устойчивые	модуль сдвига	66,3%	11,7%	78,1%	13,5%	6,3
Неустойчивые	ветра S_2	42,0%	13,1%	53,4%	15,7%	3,4
Bce	Относительная	39,5%	12,4%	50,3%	13,8%	3,6
Глубокие	высота S ₁ и	34,7%	7,9%	35,1%	8,1%	4,5
Тонкие	1	63,6%	18,4%	74,7%	21,4%	3,4
Устойчивые	число	65,9%	10,2%	77,5%	11,6%	7,1
Неустойчивые	Ричардсона	40,6%	12,9%	50,1%	14,1%	3,6

Сравнение реальных профилей и модельных решений

Представим КТО κ в виде $\kappa = H\tilde{\kappa}(S_1)$. Тогда можно найти решение $\hat{w}_j(z,\kappa,w_0)$ уравнения (2) при условиях Дирихле $w(H) = w_g$, $w(0) = w_0$ и оценим среднюю ошибку восстановленного профиля по сравнению с реальным:

$$ABS_{speed}\left(S_{1},\kappa,w_{0}\right) = \frac{1}{N} \sum_{j=1}^{N} \left\|\hat{w}_{j}\left(S_{1}H_{j},\kappa,w_{0}\right)\right\| - \left|w_{j}\left(S_{1}\right)\right\|,$$
$$ABS_{direction}\left(S_{1},\kappa,w_{0}\right) = \frac{1}{\tilde{N}} \sum_{j=1}^{\tilde{N}} \left|\arg\hat{w}_{j}\left(S_{1}H_{j},\kappa,w_{0}\right) - \arg w_{j}\left(S_{1}\right)\right|,$$

Мы исключаем из оценки $ABS_{direction}$ случаи с малыми скоростями $|\hat{w}_j|$ или $|w_j| \le 2m / s$, когда определение направления вектора ненадежно. Поэтому предел в сумме для направлений меньше: $\tilde{N} \approx 0.69N$.

Ошибка восстановления профилей ветра для оптимальных вещественного

и комплексного коэффициентов

Для модуля скорости ветра

для направления ветра

Заключение

1. Первоначальная модель Аккерблома – Экмана предсказывает поворот ветра в ПС на

45°. Наблюдаемые повороты в среднем втрое меньше.

- 2. Мы включили в модель коэффициент *γ*, и в результате оптимизации КТО согласованность с данными зондирования в коде BUFR возрастает в 7 раз для устойчивой стратификации и в 3.5 для неустойчивой. Коэффициент *γ* может интерпретироваться как мнимая часть коэффициента *к*;
- 3. Мы сравнили КТО κ , построенный как функция относительно высоты $S_1 = z/H$, или от сдвига ветра S_2 , или от числа Ричардсона Ri. Предпочтительна относительная высота.

Bykov, Philipp L. and Gordin, Vladimir A. "Complex turbulent exchange coefficient in Akerblom–Ekman model" Journal of Inverse and Ill-posed Problems, vol. 32, no. 2, 2024, pp. 199-211. <u>https://doi.org/10.1515/jiip-2021-0039</u>

Главное: тензор турбулентности в пограничном слое на плоскости *<x*,*y>* стоит искать в виде

$$\begin{pmatrix} k(z) & \gamma(z) \\ -\gamma(z) & k(z) \end{pmatrix}.$$

Комплексный прогноз погоды:

https://method.meteorf.ru/ansambl/complex.html

Спасибо за внимание