1. Авторы: Е. И. Захаров^{1,2,3}, В. В. Баринов^{4,3}, Р. А. Буренин^{1,2}, Д. С. Горбунов^{3,5}, Р. А. Кривонос^{1,3}, А. Ю. Ткаченко¹, В. А. Арефьев¹, Е. В. Филиппова¹, С. А. Гребенев¹, А. А. Лутовинов¹, И. А. Мереминский¹, С. Ю. Сазонов¹, А. Н. Семена¹, А. Е. Штыковский^{1,2}, Р. А. Сюняев¹.

2. Название: All-sky limits on sterile neutrino galactic dark matter obtained with SRG/ART-XC after two years of operations

3. Ссылки на публикацию:

ArXiv: https://arxiv.org/abs/2303.12673

Physical Review D: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.L021301

4. Общая формулировка научной проблемы и ее актуальность: Одной из главных задач современной физики является установление природы темной материи. Согласно последним наблюдениям её вклад в плотность энергии во Вселенной составляет около 25%. На данный момент существует множество различных кандидатов на роль частиц темной материи: стерильные нейтрино, аксионы, WIMP и другие. И особый интерес для физики представляют именно стерильные нейтрино. Эти гипотетические частицы являются одним из наиболее перспективных расширений стандартной модели (СМ) физики элементарных частиц. Эти частицы являются фермионами и участвуют только в гравитационном взаимодействие. Однако стерильные нейтрино могут смешиваться с активными нейтрино СМ и обеспечивать существование ненулевой массы активных нейтрино. Одним из таких механизмов смешивания является механизм seesaw, при котором массивные стерильные нейтрино (массой в несколько кэВ) дают малую массу активным нейтрино (менее эВ). К тому же, стерильные нейтрино с массами от 0.7 кэВ являются хорошими кандидатами на роль частиц холодной темной материи.

Допустим процесс, при котором стерильное нейтрино массы распадается на активное нейтрино стандартной модели и фотон с энергией $E_{\rm V}=m_{\rm s}c^2/2$, где $m_{\rm s}$ — масса стерильного нейтрино. Если масса стерильного нейтрино лежит в кэВ-ой области, то испускаемые фотоны будут относиться к рентгеновскому диапазону электромагнитного спектра. И это рентгеновское излучение, которое представляет из себя монохроматическое диффузное излучение от галактического гало, может быть зафиксировано рентгеновскими обсерваториями.

- **5.** Конкретная решаемая в работе задача и ее значение: В работе представлены результаты поиска подобного излучения от гало Млечного Пути и переведены верхнее ограничение на угол смешивания стерильных нейтрино массой от 12 до 40 кэВ.
- **6. Используемый подход, его новизна и оригинальность:** Наши результаты базируются на четырех полных равномерных обзорах неба в жестком рентгеновских лучах, выполненных телескопом СРГ/АRT-XC в 2019-2021 годах. Подобный набор данных ранее никем не использовался.
- **7. Полученные результаты и их значимость:** В результате не было зафиксировано какоголибо значимого диффузного рентгеновского излучения от гало Млечного Пути. Полученные

 $^{^{1}}$ Институт космических исследований РАН.

 $^{^{2}}$ Национальный исследовательский университет «Высшая школа экономики».

³Институт ядерных исследований РАН.

 $^{^4}$ Московский государственный университет им. Ломоносова.

⁵Московский физико-технический институт.

верхние ограничения на угол смеши других рентгеновских обсерваторий.	ивания независимым	образом подтверждают	результаты