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Statistical Study of [onospheric Plasma Response to Seismic Activity:
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Abstract. Using a rather large data base of plasma density recording on board a Russian
satellite Intercosmos 24 (more than 7000 hours over the world), we discovered a reliable
correlation between the global distribution of seismic activity and ion density variations.
The best parameters to find a significant correlation between the two, are normalized
standard deviation (NSD) and relative normalized standard deviation (RNSD). Maximal
values of ion density NSD correlated with seismic activity are 10-15%. Clear correlation
is found only for day time conditions (10-16 LT) and altitude range above the main
ionospheric maximum (heights 500-700 km). This correlation disappears during night
time conditions and during magnetic storms. Preliminary analysis of similar data col-
lected on the Cosmos-900 satellite, shows the same type of correlation.

1. Introduction

There have been published many papers on seismogenic effects observed on
board satellites, including the recording of electromagnetic wave emissions,
energetic particle fluxes, ion/electron density, magnetic field variations, ion
composition and so on (see e.g. a comprehensive monograph compiled by
Hayakawa and Fujinawa, 1994 and some recent reviews by Molchanov, 1993 and
Hayakawa, 1996). Especially intriguing are the reports on precursory signatures
in such registrations, implying a possibility of earthquake prediction. However,
till now there is no proof of reliability of these results, and furthermore the
mechanisms of seismicity-ionosphere coupling are poorly understood. We know
that there are a lot of natural perturbations in ionospheric plasma, connected with
magnetic storms, particle precipitation from radiation belts etc., which could be
misinterpreted as seismogenic events. Consequently there are a lot of doubts on
the existence of effective seismic influence on the ionospheric plasma. This
problem could be formulated in a more definite and almost practical manner: is
it possible to prove that plasma/wave measurements on board low-orbital satel-
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lites can be considered as a reliable indicator of seismic activity on the ground?
It is the main target of our research, and our initial results are reported here.

2. Main Strategy of Research and Description of Data

The basic idea of all the previous researches is to analyze the data around the
time of any rather big earthquake and above its epicenter in order to demonstrate
these data are different from those obtained in other places and times. It is so-
called case study. Sometimes we are so lucky to find this signature but it is very
difficult to prove that we have a seismogenic effect, but not coincidental plasma
burst phenomenon. Because we need to have data set either continuous in space
at a fixed time or otherwise continuous in time at a fixed place to use the
conventional statistic methods. Of course, we could use the data from geostation-
ary satellites for investigation of the second possibility, but such data seem to be
contaminated by very strong magnetospheric variations usually presentin auroral
regions. So, if we use the data from low-orbital satellites, we have an intrinsic
incompatibility of our data with statistical requirements for a case study. It means
we need to seek some other approaches.

The main idea of our strategy is to use an inhomogeneity of seismic activity
distribution over the Earth. The situation is depicted in Fig. 1. Itis well known that
seismic activity in any rather long period of time is concentrated along the so-
called plate boundaries. So, if seismic activity influences the ionosphere indeed,
we should find the statistically valuable and similar space inhomogeneity in our
data after their averaging over the time. Of course, it is desirable to have rather
large data base and to analyze the parameter whose divergence in space is not fast
in comparison with the characteristic time of usual earthquake sequences. As we
discussed in our related research (Molchanov et al., 1997), the duration of
earthquake sequence or earthquake pattern is from a few days to a few weeks in
a region about 100 k. The only plasma parameter which is conserved in this
space scale for along time is the density of cold plasma, whose estimated velocity
of magnetic drift is about 0.01-0.1 m/s at the altitude ~1000 km and life time in
magnetic tube with cross-section about 100 km is 10-100 days. Therefore we
selected the data of ion density and temperature obtained on Russian satellites
Intercosmos-24 (Aktivny) during its operation from October 1989 to December
1992, and Cosmos-900. The characteristics of these satellites are presented in
Table 1, the description of measured parameters is given in Table 2, and the
device itself is shown in Fig. 2. We have analyzed only the data received in
memory regimes ZAP-3 and ZAP-4, because the time and space resolution in the
slow mode ZAP-4 (2.5 sec and 18 km correspondingly) is enough for our
requirements. The examples of data are démonstrated in Figs. 3-5. Upper line in
Fig. 3 is the ion density in linear scale on the right in units of 10° cm™ and lower
line is the plasma temperature (left scale in K degrees). The data (29.12.1989) and
universal time (from 15.20.40 UT to 16.18.23 UT) are shown above the picture.
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Below the main orbital information is given: number of cadre (measurement
point), altitude (in km), invariant (geomagnetic) latitude (®), magnetic local time
(MLT), geographic latitude (), geographic longitude (1), magnetic L-parameter .
and some solar parameters. It is evident that large fluctuations in density and Objectve:
temperature appear only at the high-latitude part of the orbit, ¢, ® >50° in this
case. The same behavior is observed in another example depicted in Fig. 4. We i
can also note that the near-apogee data (H ~ 1500-2000 km) are usually much IPHP consi
more variable in comparison with the data near the perigee (H ~ 500-800 km) 1. Rets
even if both are at the low-latitude regions. The results of continuous 18.5 hour 2. Ret
measurements are shown in Fig. 5 (about 10 full orbits). It is obvious that unlike i- ];::
high-latitude and high-altitude parts of the orbits the data are rather similar and s Elec
regular to be used for our statistical studies. 6. Drif
Meagured
i Ion
Table 1. Main characteristics of the satellites. . Ton
Satellite INTERCOSMOS-24 Cosmos-900 l}gi
: : (ACTIVNYD) Te
Orbit type Elliptical polar Circular polar . Ton
Apogee 2497 km 523 km ' Ve
Perigee S11 km 508 km
Inclination 82.6° 82°
Orbit period 124 min 94 min
Date of launch September 28, 1989 April 30, 1977
Active life time =3 years =2.5 years
Number of data available | ~ 3500 =~ 1800 '
(in orbit) ;
DM —

Onboard Sampling time Worst resolution for. N; measurements
memory of 1 TM 3
mode and max channel
| length of record in time in space in latitude
ZAP-1 (5 min) 0.01s
ZAP-2 (30 min) 0.08 s
ZAP-3 (120 032s TE 7
min) -
ZAP-4 (19 5.12s 2.5/1.0 * sec 18/7.5 * km 0.2/0.07 * deg
hours)

Fig
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Table 2. Tonospheric Plasma Spectrometer.

(IPHP)

Objective; Complex measurements of major parameters of ionospheric aimed at;

e regular monitoring of jonosphere behavior
¢ complex study of different physical phenomena in ionosphere

IPHP consist of
1. Retarding Potential Analyzer -RPA-X - ram direction
2. Retarding Potential Analyzer -RPA-Z - zenith direction
3. Electron Temperature Sensor - TE-X - ram direction
4. Electron Temperature Sensor - TE-Y - East-West direction
S. Electron Temperature Sensor - TE-Z - zenith direction
6. Drift Meter -DM - ram direction
Measured parameters:
Ion density -Ni - -10'...5*10% cm™
Ion temperature -Ti -300...15,000 K
Major ion masses -Mi -1,4,16 am.u.
Electron temperature - Tex -700...80,000 K
Te anisotropy - Tey, Tez - 700...80,000 K
Ion drift velocity -Vdx,Vdy -0.1...12 km/s

Vertical jon flux (E<50 eV) -2 1.510° cmsec™... 1.5'10'% cm%sec”!

RPA _Z

Fig. 2. Scheme of device IPHP, which was installed on the satellites.
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Fig. 3. Example of IPHP data,obtained on satellite Intercosmos-24 on 29 Dec. 1989. Time (UT) is
shown above. Upper line in the picture is the value of ion density, whose scale is shown on the
right (103 em™3). Lower line is the electron temperature, whose scale is shown on the left (in
K degree). Below the orbital parameters are given (see text). There is the memory regime ZAP-
3 (sampling rate 0.32 s, Table 1).

‘1D 12 NINOAY “A "A




Lat

CSza
Inet

-53.0
356.0
47.0

2.700
-21.0

-35.0 -16.0
360.0 20
47.0 53.0
30.0 44.0
1.900 1.400
-23.0 -16.0

Fig. 3. Example of IPHP data,obtained
shown above. Upper line in the pict
right (x10% cm™). Lower line is the

4.0
2.0
63.0
61.0
1.100
8.0

23.0
4.0
75.0
78.0
1.200
-4.0

on satellite Intercosmos-24 on 29 Dec. 1
ure is the value of ion density,
electron temperature,

K degree). Below the orbital parameters are given (

3 (sampling rate 0.32 s, Table 1).

39.¢
10.0
100.0
118.0
3.700
-4.0

.
75.0
26.0

1120

Q.0
11.1
-2.0

820
1120
121.0

Q.0

15.5

7.0

989. Time (UT) is

whose scale is shown on the
whose scale is shown on the left (in

see text). There is the memory regime ZAP-

70.0
154.0
128.0
132.0

6.200
2.0

57.0
162.0
1330
140.0
3.100

3.0

Fig. 4. Another example of Intercosmos-24 data on 20 Dec. 1989 (ZAP-4 regime). See the
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3. Main Results of Statistical Study

We selected the following basic parameters of our recording:
1. Geographic latitude @; choose the division Ap = 4, and resulting N,=

45 divisions.
2. Geographic longitude A; AA=35", NA=72.
3. Local time LT; chosen at 4 grades: night, 22-04 LT; morning, 04-10
LT; day 10~16 LT, evening, 16-22 LT, resulting in N(L.T) = 4.
4. Altitude H,AH =100 km, inarange 500 km—2500 km, resulting in N(H)
= 20 divisions.
5. Index of magnetic activity K; 3 grades: quiet activity Kp< 3, medium

activity 3 < K, < 5, strong activity, K, > 5, resulting in N(K,) =
Thus, we orgamzed N=Ngy Ny - N(H) N(LT) - N(K,) =T. 776 1()5 elementary
“cells”. The whole volume of our data base is about 107points or about 3500
orbits. It means that in each elementary cell we found about N, = 10-30 points,
which seems as sufficient for reasonable averaging in the selected configuration.
Of course, we could perform a more detailed division, for example, introducing
the seasonal subdivisions or taking some atmospheric parameters but it could lead

to the failure of statistics,
In each elementary cell we calculated the following values:

a. Average value n = Zn/N,.

Standard deviation value: SD = (X(n,~n)%/N,)\/2.
Normalized standard deviation value:NSD = SD/n.
Relative standard deviation value:

RNSD = NSD/<NSD>,
where <NSD> is the averaging over a “map” or all the cells with equal LT, H and
K, parameters and with some limitation of latitude in order to exclude geophysi-
cal perturbations at high latitudes. Two types of presentation of the results were
chosen: 2-D map presentation and longitudinal dependence. Now some pictures

b
c.
d

will be shown and discussed.

(A) Map presentation
First of all we found that only RNSD could be helpful for estimating a

correlation with seismic activity. Asanexample, Fig. 6 illustrates the distribution
of averaged values n above n; = 0.93 n; ..., (7; ax 15 maximal value over the map)
in a range of H = 500-600 km during day. Distribution of seismic activity during
the operation of Intercosmos-24 satellitc is presented by circles. Each circle
shows a place where a rather large earthquake (M > 5) occurred. This distribution
is rather similar to that shown in Fig. 1. Indeed, density distribution has all the
features of well-known equatorial anomaly of ionospheric plasma and has no any

resemblance with the distribution of earthquakes. But now let us see adistribution
of RNSD parameter in the same situation, H = 500-600 km, LT = 10-16 in Fig.

7. The similarity is much more pronounced. Of course, it is one of the best
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examples. We analyzed all the possible maps and only in a few of them we could
find out this type of similarity on the following conditions:

a. Altitude H is near the perigee, 500 < H < 800 km.

b. Geographic latitude ¢ or geomagnetic latitude @ is limited, (¢, (DI <
50

¢.  Only day time period, LT = 10-16 LT.

d. Only geomagnetically quiet periods, XK, < 3.
Even after such a selection the correlation envisage from the maps was not so
convincing. Furthermore, it was difficult to estimate quantitatively this correla-
tion.

(B) Longitudinal dependence presentation

So, we finally analyzed only the longitudinal dependence of both RNSD and
seismic activity. Such a plot is shown in Fig. 8. The top panel is the number of
large earthquakes during all the period of our observation, averaged over latitude.
The bottom panel is the map presentation already discussed. In the center of Fig.
8 the RNSD also averaged over latitude is demonstrated by a solid line and
longitudinal dependence of earthquake occurrence is repeated by a thin line. In
correspondence with the known criteria we can believe that if RNSD >2 then the
probability of random fluctuation is low (it is famous 2 o statistical criteria in our
case). In the plot which is demonstrated in Fig. 8, we cannot find out any
significant correlation, because all the values of RNSD < 2. We can explain this
negative result with too big margin of altitudes, H = 500-1000 km, selected here.
Positive result foran altitude range H = 600-700 km is found in Fig. 9. Itis evident
that exceeding the 2olevel happened just in a region above the enhanced seismic
activity area, and furthermore, a clear peak to peak correlation can be noted. This
good correlation is not altered even if we consider only earthquakes with M > 5.3
(Fig. 10). With this criterion the number of earthquakes is decreased by about 3
times, but their correlation with density variations is the same. Then we have tried
to understand whether seismo-ionospheric coupling is controlled geographically
or geomagnetically. At first we have tried to compare our results both in the
geographic and geomagnetic coordinates. However, we have found that the
results are similar for a narrow altitude range, but for enlargement of altitude
range, when geomagnetic coordinates would be more perspective, we have
“smoothing” of the effect. It was already shown in Fig. 8, which was plotted just
in geomagnetic coordinates. So, we have chosen another way. Longitudinal
dependence of seismic occurrence and RNSD is shown in Fig. 11 only for
northern hemisphere. Increase of density variations at the longitudes 0-10° and
at the range A ~ 310-320" is possibly related with magnetic anomalies in Africa
and Brazil, but increase of RNSD in the center of plot (A~ 110-150") is no doubt
related with seismic activity. Unlike it the density variations in the southern
hemisphere do not correlate with seismic activity in the same hemisphere (Fig.
12), but they are rather well correlated with seismic activity in the opposite,
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northern hemisphere (Fig. 13). The simplest explanation of the facts presented in ‘ going to
Figs. 11-13 is that variations in the southern hemisphere are mainly controlled by whichis
northern seismic activity, and thus, we need to assume an essential coupling along H = 500-
the magnetic ficld line or geomagnetic control. in the lo1
To check the results obtained on board the Intercosmos-24 satellite we have ity, as in
performed the similar analyses of data from Cosmos-900 satellite. Though we are :
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Fig. 11. The same as in Fig. 9, but only for the northern hemisphere.



lanation of the facts presented in
isphere are mainly controlled by
sume an essential coupling along

Intercosmos-24 satellite we have
mos-900 satellite. Though we are

M>=5.0
270.0300,0330.0360.0
Map)

TT(N_of_EQs)+0.p3

TRA=p* 1.0

M>=5.0
Min= 0,00

270 300 330 380

[map,

I
~H

Z30

&

|
]

27¢ 300 330 360

I
?"}.

PUNNRN AR LA LUWLWUNNNNE S MROO G
Lmin R
0o

GITUDE
Lu)=5.0

for the northern hemisphere.

Statistical Study of Ionospheric Plasma Response to Seismic Activity 613

going to discuss these data in a separate paper, it is suitable to show one result
which is obtained for the same conditions: day time, K< 3, near perigee altitudes,
H = 500-600 km (Fig. 14). It was a great surprise for us to find the same 3 peaks
in the longitudinal dependence of density variations, related with seismic activ-

ity, as in our previous pictures.
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4. Conclusions and Discussion

1. It seems that our finding has proven an existence of seismic influence onto
the ionospheric plasma. Reliability of this proof is justified by using the 2¢
criterion in classical statistics and visual peak to peak correlation of seismic
occurrence and normalized density variations (Figs. 9—11, 13-14). It is easy to
estimate that correlation coefficient of two plots in these figures in a range A ~
110-190° is better than 0.6-0.8.

2. The effect is very sensitive to conditions of observation and the finding
is successful only after several limitations. Some of these limitations are evident,
e.g. limitation on K, and latitude. Selection of day time might be related with a
better stability of density behavior during the interval LT = 10-16. It is difficult
to explain an altitude limitation (AH = 500-700 km). Probably, this layer of
ionosphere between the main ionospheric maximum below and ion transition
heights above is the most “quiet” to natural perturbations. Anyway, one important
and practical consequence of our finding is the following: if we would like to
measure the seismogenic plasma perturbations on satellites, it is desirable to
choose a circular orbit at altitude S00-700 km.

Table 3. Data capacity around earthquake time +30 days, LT = 10-16, K,<3,H= 600-700 km.

Num | Index | Lat., | Long. | Depth.,, | Magn | Time(UT) N points <N>
de; Deg km - Date per cell
1 Z1 50 32.1 7 6.6 02.21- 5776 1.8
20.05.90
2 z2 15.7 121.2 25 6.6 07.26- 3159 1.0
16.07.90 | (67824)° | (20.9)
3 Z4 9.7 276.9 10 6.6 21.56- 10123 31
22.04.91
4 Z5 30.7 78.8 19 6.5 21.23- 3907 1.2
19.10.91
5 Z6 4.6 282.5 21 6.5 22.28- 1618 0.5
19.11.91
6 Z4a 39.4 144.8 10 6.4 13.09- 10168 3.1
07.05.91
7 Z4b 42.1 2344 10 6.4 02.50- 8880 27
13.07.91
8 Z2b 53.5 169.9 32 6.4 20.14- 1245 0.4
06.11.90
9 Zla 370 49.4 10 6.3 21.00- 2433 0.8
20.06.90 | (69502) (L4
10 Z2a 41.6 88.8 0 6.2 04.59- 1427 04
16.08.90
11 Z3 -6.0 2829 33 6.5 04.19- 10869 34 J
05.04.91

*Number of points for all the range of altitudes (see text).
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3. Geomagnetic control of the seismo-ionosphere coupling is found (Figs.
11-13). Though the mechanisms of seismic influence on the plasma of upper
ionosphere are not clear, this fact should be included in any future theoretical
explanations.

4. As concerned with the possibility of a case study, the situation became
better because we are sure now that a seismogenic effect exists. On the other hand,
selection of appropriate conditions to observe it, could be sometimes a difficult
job. To demonstrate a real situation we have made a special listing around the
times of the largest earthquakes during the operation of Intercosmos-24 satellite.
Five columns in this table are parameters of earthquake: latitude, longitude,
depth, magnitude and date. Sixth column is number of observational points,
obtained during the temporal interval +30 days around the moment of the
earthquake, during day time (LT = 10-16), X, < 3 and at the altitude range 600-
700 km. Seventh column is average number of points in elementary cell 4 X5
degrees above the earthquake epicenter. This number is too small for the reliable
statistics, even when we have observed large perturbations of density in compari-
son with average ones. Consequently, we need either to relieve our limitation and
to worsen a sensitivity or to use a more suitable satellite. For example if we
consider all the range of altitudes, the number of points in Table 3 will increase
by 20-30 times and will be possible to find a convincing earthquake signature.
That is why we need a satellite with the circular orbit.

5. In conclusion, at present we have only proved a feasibility of satellite
monitoring for seismic activity. In order to estimate an efficiency of such
observations we would like to continue our research using other types of data and
different criteria of their discrimination.
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