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Abstract. The assumptions and peculiarities of the
numerical codes, as well as the spatial resolution of
the gas-dynamical and hybrid simulations which are
available at present are discussed. As found the present
day estimates of O* ion production rates which can
effect the bow shock geometry as intensively as
observed by Pioneer-Venus-Orbiter are controversial.
The disagreement of the gas-dynamical simulations by
Breus et al. (Planet. Space Sci. 49, 131-138, 1992) and
Stahara and Spreiter (Venus and Mars: Atmospheres,
Ionospheres and Solar Wind fmeractwns, Geophysical
Monograph 66, p. 345. AGU, 1992) is a result of
different numerical implemerntation of the flow tan-
gency condition which does not permit the specification
of the equation of state p = p(p) at the impenetrable
obstacle. The numerical code by Breus et al. uses the
reflection procedure for the implementation of the flow
tangency condition and is insensitive to the equation
of state at the obstacle surface. The reflection procedure
does not employ explicitly the boundary conditions at
the obstacle which the Stahara and Spreiter code does.
As a result Stahara and Spréiter’s (Venus and Mars:
Atmospheres, Ionospheres and Solar' Wind Interactions,
Geophysical Monograph 66, p. 345. AGU, 1992) simu-
lation is in agreement with Observations only in the
case of an unreasonable value of the electron impact
ionization: in several times of the photoionization
within the magnetic barrier at Venus. -Breus et al.
(Planet. Space Sci. 40, 131-138, 1992) agree well with
observations if the electron impact ionization is 60—
70% of the photoionization there. Brecht and Ferrante
(J. geophys. Res. 96, 11209-11220, 1991) simulated an
insignificant effect of the magnetic barrier on the shock
geometry. However this simulation is unable to esti-
mate the O* ionization rate to fit the hybrid model
with observations. The cells employed by Moore et al.
(J. geophys. Res. 96, 7779-7191, 1991) are larger than
the thickness of the magnetic barrier region estimatéd
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from the magnetometer data by Zhang et al. (J.
geophys. Res. 96, 11145-11153, 1991). Thus Moore et
al. cannot simulate the magnetic barrier region prop-
erly and their prediction of an msxgmﬁcan‘t effect of the
mass-loading under any expectable O* ion producnon ‘
rate should be revised.

1. Introduction

Numerical simulations of the solar wind interaction with
planets have a rather long history. A numerical code
describing the interaction of a blunt body in a supersonic
flow was originally developed and successfully applied by
Spreiter et al. (1966) to the solar wind interaction with
the Earth. The actual bow shock position was simulated
on the basis that the magnetopause, surrounding the
magnetosphere was an impenetrable obstacle to the solar
wind flow. Later the same gas dynamic (GD) code was
applied to the simulation of the solar wind interaction
with planetary ionospheres (Spreiter ez al.,, 1970). Here
the ionopause is treated as an impenetrable obstacle at
the “non-magnetic” planets Venus and Mars. A decade
later the results of the numerical simulations are still of
interest and of value (Spreiter and Stahara, 1980a,b). The
Pioneer-Venus-Orbiter (PVO), on orbit around Venus,
with its bow shock crossing and subsequent passes
through the ionosphere region on the same orbit provides
a unique opportunity for comparison of GD simulations
with in-situ data. Mihalov et al. (1982) compared such
data obtained at specially selected orbits (No. 582 and
129) during steady state solar wind conditions with results
obtained from GD simulations based on the values of GD
parameters, estimated using experimental data, such as
ambient solar wind Mach number or the shape of the
obstacle defined by the shape of the ionopause. However,
the bow shock positions obtained in such simulations were
located substantially closer to the planet than the actually
measured positions of the shock front.
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At least two effects which were overlooked by the initial
GD code of Spreiter and Stahara can be expected to
increase the distance of the bow shock at Venus: (1)
deceleration of the solar wind flow near the planet due to
pick-up of new-born heavy ions (mass-loading); (2) the
pile-up of the interplanetary magnetic field (IMF) around
the impenetrable obstacle (magnetic barrier) which effec-
tively deflects some part of the solar wind flow.

Despite rather extended numerical simulations the mag-
nitude of the mass-loading effect on the bow shock as well
as the magnetic barrier effect are still controversial. As a
consequence the validity of the GD numerical simulations
of the SW interaction with a non-magnetic (or weakly
magnetized) planet and the effect of the mass-loading
on the global interaction pattern have been questioned.
Belotserkovskii er af. (1987) in their GD mode! took into
account the photoionization of neutral oxygen corona at
Venus. They predicted the position of the bow shock
closer to the actual PVO shock crossing during orbit 582
by virtue of prescribing the empirical altitude profile of
the neutral oxygen density and the actual value of the
ambient solar wind Mach number. Later Stahara et al.
{1987) reported no substantial effect of the mass-loading
on the bow shock position. In Stahara er al’s (1987)
model all parameters were identical to those used by Belot-
serkovskii et al. (1987). This casts serious doubts on both
the magnitude of the mass-loading as estimated by Belot-
serkovskii ef al. (1987) and their numerical algorithm.

The principal problems of the GD simulation of the
solar wind interaction with Venus were examined by Breus
and Krymskil (1992). The arguments for the fluid-like
behaviour of plasma throughout the interaction region at
Venus were presented. Recently a new two-fluid GD
model for the solar wind interaction with Venus and Mars
was developed by Breus er a/. (1992) independent of the
previous one-fluid GD model by Belotserkovskii er al.
(1987). When the numerical simulations by Belot-
serkovskii et al. (1987) and Breus er al. (1992) were com-
pared it became clear that the simulations by Breus ez al.
(1992) gave the bow shock at 2.2R, (R, is the subsolar
obstacle distance from the planetary centre) or 2.31R, (R,
is the Venus radius) within the terminator plane. On the
other hand Belotserkovskil es al. reported: 2.4R, and
2.5R,, respectively. As became obvious later, Belot-
serkovskii et al. (1987) interrupted their computational
run before the solution converged. The results by Breus
et al. (1992) are intermediate between the results of Belot-
serkovskii et al. (1987) and Stahara ¢r al. (1987), and the
mass-loading effect increases the distance of the bow
shock nevertheless by 10% in comparison to the model
which does not take into account the mass-loading. Thus
the contradiction among the GD model (including mass-
loading) still remains.

Critics of the GD approach state that the magnetic field
effects (magnetic barrier formation, finite ion gyroradii)
are not properly taken into account by the GD approach.
To study the magnetic barrier effects MHD theory or a
hybrid model of the plasma have to be used. Both
approaches treat the plasma electrons as a fluid. In MHD
theory the ions are also treated as a fluid-like, whereas in
the hybrid model the ions are in a kinetic fashion. The
magnetic field is frozen into the electron fluid: the Hall
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electric field is responsible for the deflection of the solar
wind flow by the magnetic barrier. 1t depends on the
electron thermal pressure and the Lorentz force in both
approaches. To be more precise the Hall electric field is
independent of grad p. but we have combined it with
“ambipolar” electric field grad p./en for the sake of sim-
plicity.

Hybrid models have some advantages over MHD
models, however they require very intensive com-
putational efforts. To make computational runs possible
some extra assumptions are employed. The fine spatial
resolution in the vicinity of the body is required for
adequate simulations. Simulations with poor resolution
are open to incorrect interpretation (Brecht and Ferrante,
1991). Only detailed comparison of all presently available
models (GD, MHD and hybrid models) of the solar wind
interaction with Venus can identify the various problems
and limitations of these models.

Brecht and Ferrante (1991) ignored pick-up O™ ions.
The simulations used high spatial resolution especially
within the magnetic barrier region. If such a model simu-
lated properly all the actual features of the solar wind
interaction with Venus including the magnetic field asym-
metry and the bow shock shape obviously no substantial
effect from the O™ ions exists. However Brecht and Fer-
rante (1991) found the pick-up O* ions must contribute
substantially to fit the bow shock position as measured by
PVO. However, the necessary intensity of O" ion pro-
duction cannot be estimated using this approach.

The hybrid simulation by Moore e al. (1991) was per-
formed especially to explore the effects caused by the O~
pick-up ions. But a number of unrealistic assumptions had
to be made because of the complexity of the simultaneous
dynamics of the solar wind protons and O~ ions. In par-
ticular the spatial resolution in this model was not as
high as in the simulation by Brecht and Ferrante (1991).
Unfortunately the direct comparison of magnetic field
effects in Brecht and Ferrante (1991) and Moore et al.
(1991) is impossible. Moore ez a/l. (1991) claimed that only
mass-loading beyond acceptable values would result in a
bow shock position close to the mean value inferred from
PVO data. Both the mass-loading and the magnetic field
barrier are most intensive within a layer of 300-400 km
which adjoins the ionopause (obstacle). Therefore, the
problem of proper spatial resolution also exists in the case
of mass-loading. The boundary conditions at the obstacle
seem to be important as well.

To explain the controversy among the Belotserkovskii
et al. (1987) and Spreiter and Stahara simulations of a
mass-loading effect, Stahara and Spreiter (1992) hypo-
thesized that Belotserkovskii e al. (1987) had used some
ancillary boundary condition which implies constant
entropy along the stagnation streamline and obstacle sur-
face when the flow tangency condition at the obstacle was
implemented. The strong mass-loading effect was stated
by Stahara and Spreiter to be due to the use of an improper
boundary condition at the ionopause in Belotserkovskii
et al. (1987).

Because there also exists a contradiction between the
new GD model of Breus es a/. (1992) and Stahara and
Spreiter (1992), it is instructive to discuss the entropy in
the case of non-zero mass-loading and the prospects of
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any constraint imposed on the entropy along the stag-
nation streamline in order to implement the flow tangency
condition. Moreover, the actual procedure used by Breus
et al. (1992) for numerical implementation of the flow
tangency condition must be examined and this is discussed
in Section 2.

The assumptions of the hybrid model of Moore et al.
(1991), as well as that of Brecht and Ferrante (1991)
as well as the spatial resolution in the aforementioned
simulations, will be revisited in Section 3 to examine capa-
bilities of both models within the magnetic barrier region
where the most intensive mass-loading takes place.

The present day status of numerical simulations can be
briefly summarized as follows. The GD simulations by
Breuset a/. (1992) and Stahara and Spreiter (1992) employ
the same values of physical parameters of the model. The
difference is in the numerical procedure of the implemen-
tation of the flow tangency condition. In Breus et al.
(1992) the 10% effect in shock distance is simulated for
the expected photoionization rate. In Stahara and Spreiter
(1992) the shock displacement of such an order can occur
if the net ionization rate is 5 times that of the expected
photoionization. The idea by Zhang et al. (1993) that
the electron impact ionization significantly exceeds the
photoionization is based on over-optimistic estimates.
This is unlikely at Venus under the solar activity maximum
conditions (see for details Krymskii and Breus (1993)).

The spatial resolution in Moore ez al. (1991) is
insufficient to properly simulate the narrow magnetic bar-
rier region. In Moore er al. (1991) the magnetic barrier is
broader than in Brecht and Ferrante (1991) and also
observed by PVO (Zhang er al., 1991). The cell size in
Moore et al. (1991) is larger than the magnetic barrier
thickness estimated by Zwan and Wolf (1976) and is
comparable with the scale height of the neutral oxygen
corona.

According to estimates based on the results of Moore
et al., the electron impact ionization is less intense than
the expected photoionization (Krymskii and Breus, 1993).
Thus the physical reason for effective enhancement of the
net ion production rate in Moore et al. (1991) is unclear.
The Brecht and Ferrante (1991) simulation did not specify
the ionization intensity which can fit the simulation shock
with the shock as measured by PVO.

Further extensive numerical simulations are necessary
to estimate accurately the input of different ionization
processes and the role of the magnetic barrier in the solar
wind interaction with Venus.

2. The generalized entropy balance accounting for new
particle creation and numerical implementation of the
flow tangency condition

In this section it will be shown that there is a principal
reason which makes the entropy per particle inappropriate
as one of the GD variables. This reason is that one essen-
tially obtains a two-fluid equation for the entropy per
particle if solar protons and O" ions form the plasma
population. Neither Breus er al. (1992) nor Belot-
serkovskii ef al. (1987) employed the entropy per particle
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anywhere in their numerical simulations of the solar wind
interaction with Venus. The entropy per particle is usually
treated as an intensive thermodynamic variable (Balescy,
1975). This is suitable for the thermodynamics of systems
without creation or losses of particles. In principle the
entropy per particle can reduce the number of differential
equations to be numerically solved in order to simulate
the solar wind interaction with a planet disregarding mass-
loading. Indeed the set of GD equations can be written as
follows :

)

%‘; +div(pw) = 0 1)

[fr (pW)+ p(w-Vyw+wdiv (oW +Vp =0 (2)

P

ds

i — 3

Py +(wV)s=0 3

s=35 +c IanLll 4)
PP

(p is the mass density of plasma, w the bulk velocity, p the

thermal pressure, s the entropy per particle). The subscript

“1" denotes the values on a streamline after shock cross-

ing, ¢, = 3/2 is the specific heat at constant volume,

» = 5/3 is the specific heats ratio. Obviously then
£-n 5)
PP

along a streamline is a solution of equation (3). Thus
only two differential equations (1) and (2) have to be
numerically solved.

Using this approach the boundary condition for the
entropy per particle at the impenetrable obstacle is
constant, s,, evaluated at the stagnation line.

The combined equations (1)-(4) presented above are
identical to equation (7) in Spreiter et al. (1970) if one
sets ¢/t = 0 and includes the magnetic field B.

As soon as sources or sinks of particles are included,
the situation changes. The one-fluid GD relation for the
entropy per particle is no longer valid. In general kinetics
must be used to investigate the entropy balance of a
plasma. The kinetic equation for the distribution function
of a plasma component is from Krall and Trivelpiece
(1973)

g +(vW)f + ze <E+ l[v X B])g = Ir,v)+Q(f,v)

ct M ¢ ov

(6)

where E and B are the electric and magnetic field, respec-
tively, Ze the electric charge of a particle, M the mass, /
describes the net effect of particle creation and losses, and
Q(f,v) the collisional term which does not change the
number of particles. Thus the right-hand side of the stan-
dard kinetic equation is modified by the term I. The
entropy per particle for the plasma component s is then
governed by the relation (Balescy, 1975)
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where # is the number density of the component. The last
term on the right-hand side of equation (7) ensures that s
is dimensionless, with n, and ¢, being dimensional
constants. From equations (6) and (7) we obtained for
the entropy balance

%“”Hdiv (nsw) = div <m [ (v—w)fIn ,i‘d»‘r)

”

(I+In HO(fvyd'e

v

n

— | Hr.v)In ! dr

HyCy

v

»

W= c*J vid'r

f= U (8)

ne

where the continuity equation

on . R ;
3 +div (nw) = ([(r,v)d’zr 9

Y

has been used to derive equation (8).
It is instructive to compare equation (8) with equations
(3) and (4). From equations (1) and (3) one obtains

%(ps) +div (pws) =0

p=Mn

which is similar to the left-hand side of equation (8).
Obviously two physical factors disturb the standard GD
balance of entropy : the non-Maxwellian distribution and
the particle creation (losses). The form of equation (7)
which is more suitable for the comparison is

W ne
s = ~cf/lnjd"r+1—ln 77777 ) (10)

Hy Cy

If the distribution function is assumed to be close to
Maxwellian

(V—w)" ;
f=exp{—— ¢=(mry) -
vy
then equation (10) becomes
s=>+1In Pty
T Apy
v=1. p= M (1)

Except for different constants it is similar to equation (4).
With the same distribution function the entropy balance
equation (8) is
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~

- tns) v (rsw) = 31n P f Jevydte

o) -

’ " Po

w2
+f(v 2w) Ir,v)d?v. (12)
vt

This relation is a generalized equation for entropy balance
which must be satisfied in any GD model for the solar
wind interaction with a planet including a model with
non-zero mass loading. The parameters n, and p, make
the right-hand side of equation (12) positive and ensure
that the entropy grows with time. The set of GD equations
employed in Breus er al. (1992) and earlier in Belot-
serkovskii er al. (1987) does not contradict this generalized
entropy balance equation. In those publications
I(r,v) = I(r)é(v) was required for new-born O~ ions. The
following multi-species system of GD equations can be
derived directly from the kinetic equations for the protons
and O~ ions assuming the Maxwell distribution for each
species

-~

% .
2 +div (n,w,) = 0 (13)
%n, +div(mw,) = I(r) (14)

0 .
M”{Fr (n,w,) +div (npwr,:wp)}—#Vpp = —R,, (15)

Mpﬂ{g’t (mw,) +div (mw; Wi)}+vl7i =R, (16)

;o

3 n‘g N
= M.n, 5 + 5Py

+div {wp<Mpnp% +§pp>} =—0, (17

¢ wi o, . wos
E /UMFJZI? +5pi +div <{w, ,uMpni7+§pi :Qip

(18)

where R, is the generalized drag force between O* ions
and the solar protons, while 0, is the energy exchange
rate, and u the atomic weight (a.m.u.).

For the numerical simulation we take the following set
of equations:

~

0 )

(—};npﬁ-dlv (n,w) =0 (19)
Iai

Enp}—div (n;w) = I(r) (20)

% 1
é— {(r, + pn)w] +div [(n, +pn))w:wl+ —Vp =0
ct M,

21
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¢ w?oo
Py I:Mp(np + un;) S5 +3p}

+div {w [Mp(np + uny) nj —l—\p}} = ()

pP=p.+p (22)

which was derived by Breus et a/. (1992) from equations
(13) and (14). The difference in bulk velocities of protons
and O~ ions is neglected in comparison with the common
bulk velocity of plasma w. As is clear from equations (19)
to (22) the bulk velocity of the flow is more sensitive to
the combinations #n,+ un, p,+p,. than to the individual
value of each physical variable therein. There is no restric-
tion imposed on the ratio p,/p,. Further assumptions are
necessary to replace equation (22) by the equation of
entropy balance of the one-fluid type. Only equal tem-
peratures of plasma components and constant ratio n/n,
throughout the magnetosheath permit a one-fluid type
entropy equation.

Indeed the entropy per particle for a two ion system of
protons and O* ions is

B (7npsp -+ n;8;)

23)
(n,+m) (23)

n; ( |
(5, —S,) = §
ny+n T P

_ n—'—;ln Pr Po ";“ o " S
np+ 1 - Pov Pv \ o yp

The one-fluid GD model gives the following value for the
entropy per particle :

5:5+31n[ P (”w*”@)}
. (n,+m) Po

s =5+

The right-hand side of this equation can be identical to
the right-hand side of equation (11) only if the conditions
mentioned above are satisfied. The equation which
describes the evolution of the entropy along the streamline
can be deduced from equation (24). It is

ds__3dfm [Pp Pa <) (”} (25)
ds 2 dr 1}1p+n, Pro P\ ) \ 1y ) ]
The conservation of the proton entropy ds,dr = 0 was
employed to get equation (25). The conservation of pro-
ton entropy is straightforward from equations (12) and
(19).

The right-hand side of equation {25) is dependent on
the characteristics of both ion populations in the plasma
and 1s unsuitable for any one-fluid GD simulation. There-
fore, the entropy per particle was not employed at any
stage and in any form in simulations by Breus er ¢/. (1992)
or Belotserkovskii er al. (1987). In the two-fluid model by
Breus et al. (1992) the total plasma pressure p and the
plasma mass density 11, + un; should satisfy
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5 {1 B gMp(np—i-uni)wz} ul 26)

S5p (n,+um;)

which follows from equations (19) to (22). The left-hand
side of this equation can be written as ds/dz if the one-
fluid relation for the entropy per particle is assumed to be
valid. This is physically incorrect in the case of non-zero
mass-loading within the magnetosheath at Venus. Never-
theless Stahara and Spreiter (1992) used the values of
pin,+ un) along the streamline to examine the entropy
per particle along the stagnation line in Belotserkovskii er
al. (1987). In spite of this misinterpretation the variations
of p/(n,+un) are useful for comparison of Stahara et
al.’s (1987) and Breus ez al.’s (1992) results but it is unable
to explain the difference between the simulations.

As one can see from Table 1 the simulations differ
from each other most prominently in the vicinity of the
impenetrable obstacle. The mass density in Breus et al.
(1992) is intermediate to the simulation with zero mass-
loading and the results by Stahara and Spreiter (1992)
obtained for the expected photoionization of the oxygen
corona. The thermal pressure in Breus er al. (1992) is
minimal. There is a very high gradient in the mass density
and consequently in p/(n,+ pn;)" as simulated by Stahara
and Spreiter (1992). In contrast the mass density at the
impenetrable obstacle in Breus er al. (1992) is lower by a
factor of 2 and an insignificant decrease in p/(n,+ pn;)’
toward the obstacle was simulated. It follows from equa-
tion (26) that in close proximity of the stagnation point
we have

d l p 5 ul
—In———= — - — .
dr (n, + umy) 3 {(ny,+un;)

27

Obviously the high density in Stahara and Spreiter (1992)
implies a lower right-hand side and lower effects of mass-
loading itself in variations of p/(n,+ un;)" along the stag-
nation streamline. This conclusion is in contrast with the
simulation results displayed in Fig. 1. Therefore, the
difference of the simulation results is not a consequence
of the non-zero mass-loading itself but of a difference in
the numerical codes.

In Breus er al. the flow tangency condition was
imptemented via a reflection procedure. According to this
procedure a row of ghost computational points is added
at the edge of the computational domain which is half
of a4 dayside magnetosheath transformed in a rectangle
according to the law given in the Appendix.

The ghost points are located at the same normal dis-
tance to the boundary of the physical domain as the cor-
responding mesh points within the edge rows of the physi-
cal domain. The details of the reflection procedure itself
are given in the Appendix.

In Stahara and Spreiter’s model the mesh points are
located at the impenetrable obstacle surface. In principle
this method can be more sensitive to the unlimited deriva-
tives of the mass density in the vicinity of the obstacle.
The special procedure had been employed in Stahara and
Spreiter to make the code second-order accurate at the
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Table 1. Results
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Stahara and
Spreiter

Models

(1987.1991)

Brecht and Ferrante
(1991) (1991)
N2 N6

Belotserkovskii er al.
(1987,
Breus er al. (1992)

Moore et al.
(1991) (1992)

Effect on the BS
position I,

Reason
disagreements

No mass-loading effect for

Strong effect of mass-
loading by Belotserkovskii

et al. and Breus {3] is an
artifact resulting from
boundary conditions:
constant entropy along
stagnation and wetting

streamlines

No mass-loading effect.
Very strong effect of
magnetic barrier on BS
position

Magnetic barrier
does not deflect the
solar wind
effectively.
Substantial mass-
loading necessary
to fit BS with
observed position.
Fine resolution is
necessary

Substantial mass-loading
effect for 1,

Very strong effect on the
magnetic barrier is
expected because of the
spatial resolution was poor
in both simulations as
mentioned by Brecht and
Ferrante. Minimal
thickness of cell 100 km is
only half of the neutral
scale height of 200 km used
in model

The entropy per particle was Agreement exists with
not used as one of the GD  Breus er al. (1992) in the
variables either by estimation of mass-loading
Belotserkovskii et al. or by  effect. The fine resolution
Breus et al., as well as an is necessary and strong
ancillary condition input of computational
employed when the flow process itself on the
tangency condition at the magnetic field is expected.
ionopause surface was Asymmetry of magnetic
implemented field much in excess of
mean PVO values

boundary. At the boundary additional points in the nor-

5k

Zero mass loading

Ionopause

mal direction in the differencing stencil were employed to
insure that the discretized finite difference equations retain
second-order spatial accuracy at those locations.

The ambiguity of the flow tangency condition in GD
simulation with/without mass-loading which can lead to
the uniqueness of the solution have been already discussed
in Breus et al. (1992). Here we continue to discuss this
problem.

The theorem by Coshi-Kovalevskaya can provide a
proof of the uniqueness of GD solutions. Under axial
symmetry the steady state solution is dependent on only
two spatial variables and Coshi-Kovalevskaya’s theorem

X/Ro

0.5

0 can be straightforwardly applied. As one can conclude,
the conditions imposed by this theorem may be unsatisfied

Ionopause

in the case of non-zero mass-loading. In particular this
theorem implies the equation of state is an analytical
function, that is its partial derivatives are coupled to each
other.

Thus, if there are some singular points the uniqueness
is questioned. As well the singular points must have an
impact on the discretization and on the numerical solu-
tion. This can be very critical for the numerical implemen-
tation of the boundary conditions if there are any singular
points at the boundary.

|

Therefore, the analysis of the approximate solution of
the GD equations in partial derivatives which is valid in

10

X/Ro

0.5

0 the vicinity of the stagnation point can cast new light on
the uniqueness of the solution to the GD equations and
on the numerical implementation of the flow tangency
condition.

Fig. 1. Ratio p/p’ along stagnation streamtine for zero and non-
zero mass-loading (Stahara and Spreiter, private communi-
cation).

Let us begin with the equation for total plasma pressure,
equation (26).
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This equation is the state equation in the case of non-
zero mass-loading. Under the steady state conditions
equation (26) takes the form

wV)in—2— — —
(n, +un,)
5 L 21’\/1p(i1p,+luh)n':\). o o8
3 5p (1, + pr;)

At the stagnation streamline which comes to the stag-
nation point the tangential velocity », must be zero due
to axial symmetry. As a consequence equation (28) can
be written in the form

il p 5 < 2M (n, +un,)n'§>
w,—Ih—m— == - —

ok (my+un) 3 op

PR ill N (29)
(n, + um;)

where the coordinate & is the distance from the obstacle
along the stagnation streamline. Note that the stagnation
streamline is along the normal to the impenetrable
obstacle therein.

In the proximity of the obstacle w, = 0 and the fol-
lowing Taylor series

is a reasonable approximation.

Because of physical constraints the gradients of the
plasma pressure within the nose region are small enough
and it follows from equation (3) that the mass density of
plasma n,+ un; obeys an equation

ow

" <

<

(2, +un;) = —pul.

>
W

e
e

,

i=0 =

The local approximate solution is straightforward
ny+un = Ay +.o/ In :
XV}
where .o/, < 0 to make n,+ un, positive in the stagnation
point £ = 0. For ./, one has
Cw,
eQ/l = A,U] = . (30)
ol

Slio0

The flow stagnates at the obstacle and fw,/¢él. -, > 0.
Thus the solution given here is physically reasonable.

It is easy to see ./, = 0, if I = 0 that the solution has
no peculiarity at ¢ = 0. In other words the stagnation
point is not peculiar for the solution of the GD equations
in partial derivatives. In contrast n,+ pn; is unlimited 1f
I#£0and ¢ = 0.

Therefore, the stagnation point becomes peculiar as
soon as / # 0. The solution presented here nevertheless
satisfies the flow tangency condition

w4 pm) ~ S dn \ —{)

)

when & — 0.
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If this solution is extended in the region surrounding the
stagnation point then

o wa(C, 0)
ny, A+ pny = A,s’/o(i,f))-l—,@/,(g)lnT

0

where ¢ and 0 are the coordinates along the normal and
the tangential coordinates, respectively, w, is a dimen-
sional constant.

The function /(&) satisfies the condition

(8 <0

and

o <1 v)m . (31)

wh

Obviously it presumes that

(i V)wn < 0.
Wy

That is w, increases outward, w = —w,e,+w.e.. The
terms like
w, dA4,
o ln—+ —
wy  d¢
and
(wV) A,

were neglected due to w, = 0if ¢ = 0 to get equation (31).

The flow tangency condition is also satisfied :

wy(n,+un) =0 if&=0.

Such unlimited plasma density n,+ un; and unlimited
derivatives mean there is a peculiarity in the subsolar point
and perhaps at the obstacle surface. Consequently the
equation of state is no longer analytical and the unique-
ness of the solution for the GD equations in partial deriva-
tives should be specially proven.

The numerical computations cannot be done with arbi-
trary spatial resolution and with unlimited values. There-
fore, there is a regularization when the equations are dis-
cretized. The regularization depends on the numerical
scheme employed in the simulation.

Regardless of this the physical sense of the unlimited
mass density is a matter of discussion. In reality the mass
density is limited everywhere and the peculiarity in the
stagnation point is a consequence of simplifications done
to come to the GD model. Thus the regularization is
required to be physically reasonable.

It is a paradox that the more accurately the numerical
solution reproduces the GD solution in the vicinity of the
stagnation point the further it can be from reality. And
no one criterion which is to select physically reasonable
regularization can be obtained employing the gas-
dynamics and computational mathematics.

As one can see from the results presented by Breus et
al. and Stahara and Spreiter the mass density within the
stagnation point is finite in both models. Thus none of them
reproduced accurately the solution of the GD equations
within this point. But the higher mass density and sharper
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gradients in Stahara and Spreiter are closer to the solution
of the GD equations in partial derivatives. Nevertheless the
question of which numerical model is in better agreement
with observations is a matter for discussion.

Finally we can discuss the plasma depletion within the
interplanetary magnetic field (IMF) build-up region as a
proxy for the physical process which makes the plasma
density finite throughout the dayside magnetosheath.

The GD model corresponds to the M, — oc limit of
the more general MHD model. As one can see from the
analysis presented above, the physically unreal growth of
the plasma density occurs at the impenetrable obstacle
where the non-zero IMF effects can no longer be ignored
even if M, is high enough.

There are two more general approaches which allow us
to analyse the effect of the non-zero IMF. One is the
hybrid model and another one is the MHD model already
mentioned. Let us discuss briefly the results obtained
within the framework of the approaches which are avail-
able today.

It was found in the hybrid simulation of the solar wind
interaction with Venus which was done by Moore er af.
(1991) that the plasma density is about zero in the close
proximity of the obstacle. Perhaps this is an effect of the
absorbing obstacle and the plasma density is non-zero
in reality, but nevertheless the infinite density was not
simulated and obviously the density was much less than
that in Stahara and Spreiter’s paper.

Recently McGary and Pontius (1994) have attempted
to analyse the IMF build-up effect. Unfortunately they
ignored the plasma depletion along the magnetic field
lines because of two-dimensional geometry which they
presumed to make the calculation possible. The physicaily
unrealistic solution for the plasma density having a singu-
larity at the obstacle is also valid in their model.

At the same time the reflection procedure used by Breus
et al. for implementation of the flow tangency condition
secems to suit better a boundary layer where the IMF effect
(a plasma depletion) is important, since it ignores any
singularity which is beyond the GD flow region.

This is likely the reason for the disagreement between
the Stahara and Spreiter and Breus et a/. models.

3. Comparative analysis of principal parameters and
results of hybrid models of solar wind interaction with
Venus

The standard set of kinetic equations for protons and O*
ions can be used to specify parameters of hybrid simu-
lations by Moore er al. (1991) and Brecht and Ferrante
(1991). The values ascribed to the model in order to make
simulations run possible should be compared with values
expected at Venus. Consequently the reliability of simu-
lation results can be better understood. The set of equa-
tions which describe the dynamics of protons and O* ions
is

of Q Cf;

C/j‘ + (VW) — = (W—v) x B:Bfff'

ot u oy

¢ (A'/nl N

+ B, = In8(v) (32)
‘llz)\/[p Vv
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. _ g% ¢ g Yo _
A +(vV)f, —Q,(w—v) xB/B v + Mth v 0
(33)
the magnetic field B
LEL S (34)
¢ Ot
the electric field E
1
E=— ;[w, B]+E, (35
1 l
Eh:~(~Vpe+—(VxB)xB> (36)
en 47
and electrons
n= J(./;, +£)d’v (37)
1 ) R
w=; v(f,+f)d° (38)
on )
A +div(nw) = [. (39

Obviously the number of equations (32)—(39) is larger
than the number of variables to be specified. The electron
temperature of the plasma may be treated as an external
parameter of the model. The continuity equation for the
plasma electrons imposes an additional restriction on the
proton and ion flow

= +div (fv(_f}; ) d%) _1 (40)

Thus not all the components of ion fluxes are actually
independent. The continuity equation (36) is unemployed
by all hybrid models. Each component of each ion flux is
computed independently. The numerical errors in fluxes
along the maximum variation direction can produce criti-
cal variations in simulation results. Before the com-
putational run becomes possible the equations should be
written for dimensionless variables. To compare the
model with the actual solar wind interaction with Venus
the following dimensionless parameters are convenient :

1, R w R v . B
T=—, W= —, ¥=—, B=—,
R, Uy Ug Uy

-3 3

n . foug . iU

. . JpHo 1“0

n=—., f = . fi=m— 4D
Hy U Ny

where n, and u, are the number density and bulk velocity
of ambient solar wind, B, the strength of unperturbed
IMF. The planetary radius R, should be a unity of spatial
grid. Under these assumptions the following dimen-
stonless equations which describe the ions should be
solved numerically:
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@ Q'R j
—1+(vy— ;”HW—wa]f
1. oF IR,
+ B o= taE) (42)
u & NoUg
-~ /R . ~ 7 . ol
‘f"+(V)fp -2 —‘)xB]f;‘/—E‘+EhﬂF:0
u() (« v
43)
B R
- =VxE (44
CT
2 Uy =
E=-wxB+ " E 4
W X +QPR“ h ( 5)
” 1 | . .
Eh=ﬂ{—Vm+-vaB>xB} (46)
n M3

To carry out an adequate simulation of the real situation
the actual values of the ratio Q) Ryuy. I(R/Ry) " Ro/Rouy
and the atomic weight of planetary ions, as well as the
Alfvenic Mach number of ambient solar wind have to be
prescribed to the model. When the planetary ion effects
are ignored as in Brecht and Ferrante (1991). only two
parameters are characteristic to the numerical simulation :
namely Q R, /u, and M ,.

Brecht and Ferrante (1991) concentrated on the mag-
netic field effects. A number of simulations were made to
study the effect of computational cell size on the subsolar
bow shock position and the subsolar magnetic barrier
structure. The subsolar region of a planet with 6000 km
radius was simulated twice. One simulation has crude
resolution : 100 km in the sunward direction and 360 km
in the other direction (simulation No. 3 therein) and ano-
ther one is of much finer resolution: 40-50 km in the
sunward direction and 100 km in others (simulation No.
6). One finds that fine resolution is in fact necessary for a
proper simulation. Thus the resolution in the sunward
direction should be better than 6.7 x 107 R, (R, is the
planetary radius prescribed to the model) and 1.7 x 107°
R, in other directions. Moore ef al.’s (1991) simulations
concentrated on the effects of O* pick-up ions. Because
of the computational constraints a reduced atomic weight
of OF ion p = py/2 and the reduced radius of planet
Ry = R,j2 (1 = 16 a.m.u. is the actual weight of O~ ion,
R, is the radius of Venus) were used in the model. Under
these circumstances the ratio of the planetary radius to
the gyroradius of O™ ions

QR _ 4R
Ly Holty

retains its actual value. The right-hand side of equation
(42) takes the same value as at Venus if / = 2/, (1, is the
actual rate of O* ion formation at Venus) is prescribed
to the model. The last term on the left-hand side of
equation (42) describes the Hall electric field effect on O~
ions. It is twice the actual value and a stronger depletion
of O™ ions within the magnetic barrier region is expected.
In equation (43) the ratio of the planetary radius to the
proton gyroradius is only half of the value expected at
Venus
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QR, 4R,

U 2uy

As a result the finite gyroradius effect of the solar protons
is two times stronger compared with the parameters of
Venus.

It was already mentioned that the O* ion formation
rate / = 21, provides the actual value of the O* ion abun-
dance. But only a number density of O™ ions twice as high
as its actual value can generate a drag force due to O™ ion
pick-up comparable with the Hall electric field and can
give a proper value to the mass-loading effect. Indeed the
total electric field E can be presented as

B = (6, < Bl + (8, ) x B

2u, I[ 3
+ B " _Vpe+

1;2 [(Vxﬁ)xﬁ}

Q.R, A M3
vhde
e [
i (Y4 /jfdl 47
J Mo

The second term on the right-hand side of equation (47)
is proportional to the difference of bulk velocities of solar
protons and O™ ions and describes the deceleration of the
protons due to the pick-up of O~ ions. The third term
contains the Hall electric field resulting from the magnetic
field build-up within the magnetic barrier. An even more
intense ionization rate: [ = 47, should be used in the
model to move the mass-loading effect close to its actual
value at Venus. If it is so the mass density of plasma
and the mass production rate become close to the value
expected for the GD models by Breus er a/. (1992) and
Stahara and Spreiter (1992). Indeed one obtains the con-
tinuity equation

Wo ., Tuy R,
d iy
v <n u + 5 nu) 4u0n0

after the integration of the sum of equations (42) and
(43). Obviously the O™ ions should be two times more
abundant and the ionization rate should be increased by
a factor of 4 to fit the hybrid model by Moore et al. (1991)
with the GD models with non-zero mass-loading.
Initially —numerical simulation with cells of
102 x 360 x 360 km” size and the planet of 3000 km radius
was done by Moore et al. (1991). Such cells look unsuit-
able for the proper simulation of the magnetic barrier
region and mass loading at Venus. Indeed the subsolar
magnetic barrier thickness was estimated from the in situ
PVO data as 200 km (Zhang et al., 1991). As well the
analytical MHD treatment of the magnetic barrier region
by Zwan and Wolf (1976) gave a magnetic barrier size of
R,/M3 (R, is the curvature radius of the obstacle). If the
typical M, at Venus is presumed the Zwan and Wolf
(1976) estimate is very close to the value estimated from
in situ data. Since the radius of the planet used in the
model is only half of the actual value the magnetic barrier
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Table 2. Parameters and results of different simulations parameters

T. K. Breus et al.: Comparative study of numerical simulations

Stahara and  Belotser-

Spreiter kovskii Breus ¢t al.
Input (1987, 1991)  eral (1987)  (1992)
parameters [13.17] [15] [16]

GD model

mass-loading  GD one-fluid GD two-fluid
Goals of effect on BS  mass-loading mass-loading
model position effect effect
Mach number Mys =157 Mys =357 Mys=57
Obstacle radius R, =R, R, = R, R, = R,
Mass-loading I=1 I=1 =1
intensity
nyn, #0 #0 #0
Mass of heavy ion 16 16 16
A*/R, 0 0 0
Size of
computational
cell in sunward
direction

in other direction

Moore et al.
Brecht and Ferrante [11] (1992)
(1991) (1991) private
N2 N6 (1991) [12] communication
Hybrid model Hybrid model
magnetic barrier effect mass-loading effect
Mys=My=5 Mys=M\=5 Mys=M,=35
R, =R, R, = R,2 Ry = R)2
I=0 1=0 =12 I=751,
=0 -0 #0 £0

8 8
Ryip, = 8.22 16.4 8.22 8.22
100 km 40-50 km 200 km 100 km
360 km 100 km 760 km 360 km

+*—free path of proton: p.— proton gyroradius p, = u,/Q,.Q, = eB, Mpc; u,—ambient solar wind velocity ; Ry—Venus radius

I, —empirical mass-loading source [13].

size should also be half of the actual thickness 200 km,
that is, 100 km. Of course this presumes that the model is
adequate to the situation at Venus. Obviously the initial
simulation by Moore ef al. (1991) was too crude to resolve
magnetic barrier of adequate thickness.

Later Moore et al. (1992) performed a new simulation
with cells 51 x180x 180 km' (Moore. private com-
munication). The situation looks better but even in this
case there are only two cells for the adequate magnetic
barrier thickness. Using the planetary radius scaling one
obtains 1.7x107? R, in the sunward direction and
6% 107% R, in other directions. If the dimensionless cell
size and the parameter R, /i, in Moore et al. (1992) are
compared with the Brecht and Ferrante (1991) simulation
the new run by Moore er «l. is very close to simulation
No. 3 in Brecht and Ferrante when the enormous effect
of the magnetic barrier is simulated. The mass-loading
effect is disregarded for such comparison. In general the
rectangular cells of the hybrid model are more convenient
for the simulation of particle dynamics than for a localized
boundary layer structure like a magnetic barrier. Namely
the magnetic barrier follows the shape of the obstacle and
most intensive variations of the parameters therein are
along the normal to the obstacle surface. The normal to
the obstacle surface is not everywhere in the sunward
direction which is of the finest resolution in the hybrid
model. Therefore, the effective resolution of the magnetic
barrier region becomes more crude at the flanks. Possibly
the stronger simulated asymmetry in the magnetic field
strength when it is compared with the measured asym-
metry is partly due to the decrease in the effective res-
olution of the magnetic barrier from nose point to flanks.

4. Conclusion

The comparative analysis of the simulations of the solar
wind interaction with Venus which are available at present

is summarized in Table 2. The substantial effect of the
mass addition to the flow (the pick-up ions) on the shock
geometry at Venus is confidently established. But the mag-
nitude of the mass addition rate which is able to produce
the observed shock geometry is controversial. The differ-
ence between Breus ef al. (1992) and Stahara and Spreiter
(1992) is likely a result of different numerical implemen-
tation of the flow tangency condition which does not
permit the specification of the equation of state p = p(p)
at the impenetrable obstacle because of its ambiguity.

The abrupt drop of the ratio p/(n,+ un;)” in the vicinity
of the impenetrable obstacle as reported by Stahara and
Spreiter (1992), is unrelated to the non-zero intensity of
the mass-loading. It is probably due to the ambiguous
equation of state at the obstacle which should be employed
for the mesh points there.

The numerical code by Breus es al. (1992) uses the
reflection procedure for the implementation of the flow
tangency condition and is insensitive to the equation of
state at the obstacle surface. The magnetic barrier does
not deflect the solar wind effectively enough to fit the bow
shock position inferred from the hybrid simulations with
actual mean bow shock at Venus (Brecht and Ferrante,
1991, simulation No. 6).

The hybrid simulations which account for O* ions and
allows spatial resolution better than 6.7 x 1072 R, in the
sunward direction and 1.7 x 1072 R, in other directions
could likely resolve existing controversy. The unusually
high effect of the electron impact ionization can fit the
results of the simulation by Stahara and Spreiter (1992)
with observations.

In contrast Breus et al. (1992) simulated the proper
geometry of the shock at Venus for the electron impact
lonization at a level of 60% of the photoionization rate
during the solar activity maximum.
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Appendix

Let the obstacle to the solar wind flow be a superconducting and
impenetrable sphere for the sake of simplicity. In this particular
case the GD equations which were numerically solved in Breus
et al. (1992) are

R
cny, 1 ¢

R ¢ .
o1 +72E(’"”p“))‘*’m@(Smﬂnpw,,) =90 (AD)
con, 1 ¢ 1 é .
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where @ is the zenith angle, and r, 8, ¢ the standard spherical
coordinates. For computational reasons the domain bounded
the shock front and the spherical obstacle is transformed in a
rectangle-like region 1 x 1/2 in new curvilinear coordinates

L1
R,

e(0)

4
=

Function £(6) describes the variation of magnetosheath thick-
ness with zenith angle that is the thickness of the physical domain
to be simulated, &' = de(0)/df; R, is the radius of the impen-
etrable sphere. This new coordinate system is not orthogonal
but it moves very close to orthogonal near the obstacle when
& — 0. This circumstance allows us to ignore the fact that the
actual normal to the impenetrable obstacle is not exactly along
the coordinate when the numerical implementation of the flow
tangency condition is done.

To write equations (A1)—(A3) in new coordinates the partial
derivatives are replaced in the following manner:
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¢ ¢S
.

oo o & &
After this transformation the GD equations (A1)—(A5) take
the form:
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Using these equations one can derive the following relations
which implement numerically a flow tangency condition at the
impenetrable obstacle (¢ = 0) :

(nw,)o, = —(w,)

il

(W, )y ;= —(mw,)

[y +un o]y, = —[(n, + pi ) wows ]
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( w? . 5811
{ (n, +un,) 2 T am, W, )
w?  5p
N {[(np_‘_lunl)? M :IW } j.

Subscript zero denotes ghost points within a row which is
artificially added to the physical domain, j is the number of
points within this row. Subscript 1 is for points within a row
which adjoins the obstacle within the physical domain.

Keeping the flowing plasma at the impenetrable surface of
finite curvature one can find from equation (A8) the following
relation should be valid

("‘p

M
=L (n, +un)w*ls _,.
05‘;:0 2 P :ul LAO

This relation has been used in Breus et al. (1992) to calculate
pressure variations along the coordinate ¢ when calculations
were done in the vicinity of the obstacle.

There is however a critical point within the reflection
procedure. In Breus ¢f a/. the variations of density of both solar
wind protons and 07 ions which are along the normal to the
obstacle surface were neglected if the calculations are done in
points adjoining the obstacle :

I’l )0/ (np)l 7

(nx)(),j = (nl) 1./

This is done in accordance with an assumption that all physi-
cal variables, /, and their derivatives must be limited to be
physically reasonable. Otherwise there are principal difficulties
in transformation of the GD equations in partial derivativesin to
the finite difference equations to be numerically solved. Indeed,
within a point (1, j} the radial flux can be written as follows :

. e h
["‘ (’7p ‘Hmi)“':“h 2 = 5 [’" (np +#”»)”'r]|o 5
2 2
+ 5 (ny +un)wale, s
. h
0<¢ < 5

where /i is the step in the radial (or &) direction. Consequently
the double sided difference between points 0 and 1 is

1 .
A A un)w, 1 2 — [ () w1 )

h
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(1 + pm)rw: ”n+ (A1)

=, 1P vl
in accordance with the reflection procedure described above.
The double sided difference is obviously limited. But

aw,
Yoor

is limited if only »,+ pn; is limited at the obstacle surface that is
in contradiction with the boundary layer solution given in the
text. The right-hand side terms of equation (11) cannot be
limited. Thus the finite difference equations have nothing to do
with the GD equations in partial derivatives if the mass-loading
intensity is non-zero and n,+ pn; is unlimited at the obstacle.
The regularization procedure which makes the solution of equa-
tions in partial derivatives non-singular is required.
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