PROCEEDINGS OF THE

IVth INTERNATIONAL SEMINAR
MANUFACTURING OF SCIENTIFIC
SPACE INSTRUMENTATION
INSTRUMENTS FOR STUDYING
SPACE PLASMA AND
COSMIC RAYS
USSR, Frunze, September 18-24, 1989

Т Р У Д Ы
N МЕЖДУНАРОДНОГО СЕМИНАРА
НАУЧНОЕ КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ

ГІРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ КОСМИЧЕСКОЙ ПЛІЗМЫ И КОСМИЧЕСКИХ ЛУЧЕЙ

СССР, Фрунзе, 18-24 сентября 1989

WIDE-ANGLE DEVICE FOR MEASUREMENT OF COLD PLAZMA PARAMETERS

V.V.Afonin, V.V.Bezrouckih, K.I.Gringauz, A.P.Remizov, N.F.Smirnova Space Research Institute, USŚR Academy of Sciences, Moscow A.P.Belyashin, L.I.Denshchikova, V.F.Kopylov NPO VACUUMMASHPRIBOR, Moscow.

1. INTRODUCTION

In ionospheric plasma research by direct methods the measrements of main ion parameters are usually made with ion traps either in "floating" mode for measuring the total ion density. n_{i} or in the mode with ion energy analysis (RPA - retarding potential analyzers) - to measure ion density n_{i}, ion temperature T_{i} and main ion masses M_{i}; both spherical and flat RYAs are utilized.

The advantages of the spherical ion trap are its wide field of view and higher sensitivity as compared to the flat PAs, its drawback is difficulties with measuring ion temperature and masses. The flat RPAs, despite the fact that they are less sensitive and have smaller FOV, show good results in measurements of T_{i} and M_{i} (see Table 1).

Table 1
Qualitative comparison of spherical and flat RPAs

The instrument MARIPROBE is designed within the MARS-94 project, whose ion part combines the advantages of both spherical and flat RPAs. This is especially important in case of missing or insufficient a prior knowledge of the measurement conditions.

The ion part of MARIPROBE-D sensor intended for ionospheric plasma parameters measurements is described in this report. Its design (without detection unit), technology of its manufacturing and results of computer modeling are also briefly described.

This device enables the measurements of the following parameters of the ionospheric plasma component in the wide angle range (two sensors cover the whole angular space):

Table 2

parameter		range of measurement
ion density	n_{i}	$0,1 \ldots 5.10^{6} \mathrm{~cm}^{-3} ;$
ion temperature	T_{i}	$100 \ldots 15000 \mathrm{~K} ;$
mass composition	M_{i}	$2-3$ major masses
ion drift vector	V_{d}	
magnitude		$50 \mathrm{~m} / \mathrm{s} \ldots 35 \mathrm{~km} / \mathrm{s} ;$
angular resolution		$15^{\circ}-$ from TM records
		$2^{\circ}-$ after data reduction
		(for $\mathrm{n} \geq 100_{\mathrm{i}} \mathrm{cm}^{-3}$)

The two perpendicular drift components are measured directly and the third component (aligned along the sensor axis) is defined by ground based evaluation of experimental data.

2. ION PART OF THE SENSOR

The described device consists of 28 electrode sets of RPA without collectors. All 28 RPA share a common detection unit (collector) and ensure the angular coverage slightly more than 2π (flat angle equals 190°). The FOV of each RPA is 42° and the angular distance between adjacent RPAs is not more than 30°.

The design of the sensor is shown in. Fig.1a. The electrode system is composed of 28° flat analyzers with retarding potential (RPA) mounted on the case 2 along the spherical segment 3 limited by the flat angle 100°. Two spherical segment grids 4 and 5 are mounted behind the analyzer outputs concentrically to the sphere 3. The grid 4 is electrically connected to the case 2. The focusing potential $\mathrm{U}_{\mathrm{foc}}$ is applied to the grid 5 . The grid 5 is composed of the two qrids with equal potential to increase the electric field homogeneity. The detector 6 is located at the centre of the sphere. For different applications a variety of detectors may be used - a simple flat metallic collector, or a microchannel plate, or even more sophisticated detection devices.

Each RPA (Fig.1b) consists of the collimator 1 which defines

The ion part of MARIPROBE-D sensor intended for ionospheric plasma parameters measurements is described in this report. Its design (without detection unit), technology of its manufacturing and results of computer modeling are also briefly described.

This device enables the measurements of the following parameters of the ionospheric plasma component in the wide angle range (two sensors cover the whole angular space):

Table 2

parameter		range of measurement
ion density	n_{i}	$0,1 \ldots 5.10^{6} \mathrm{~cm}^{-3} ;$
ion temperature	T_{i}	$100 \ldots 15000 \mathrm{~K} ;$
máss composition	M_{i}	$2-3$ major masses
ion drift vector	V_{d}	
magnitude		$50 \mathrm{~ms} \ldots 35 \mathrm{~km} / \mathrm{s} ;$
angular resolution		$15^{\circ}-$ from TM records
		2°-after data reduction
		(for $\mathrm{n} \geq 100_{\mathrm{i}} \mathrm{cm}^{-3}$)

The two perpendicular drift components are measured directly and the third component (aligned along the sensor axis) is defined by ground based evaluation of experimental data.

2. ION PART OF THE SENSOR

The described device consists of 28 electrode sets of RPA without collectors. All 28 RPA share a common detection unit (collector) and ensure the angular coverage slightly more than 2π (flat angle equals 190°). The FOV of each RPA is 42° and the angular distance between adjacent RPAs is not more than 30°.

The design of the sensor is shown in. Fig.1a. The electrode system is composed of 28° flat analyzers with retarding potential (RPA) mounted on the case 2 along the spherical segment 3 limited by the flat angle 100°. Two spherical segment grids 4 and 5 are mounted behind the analyzer outputs concentrically to the sphere 3. The grid 4 is electrically connected to the case 2. The focusing potential $\mathrm{U}_{\mathrm{foc}}$ is applied to the grid 5 . The grid 5 is composed of the two qrids with equal potential to increase the electric field homogeneity. The detector 6 is located at the centre of the sphere. For different applications a variety of detectors may be used - a simple flat metallic collector, or a microchannel plate, or even more sophisticated detection devices.

Each RPA (Fig.1b) consists of the collimator 1 which defines

Fig. 1a. MARIPROBE-D sensor. Sensor electron-optic electrode system

Fig. 1b. Retarding Potential Analyzer (RPA):
1 - collimator; 2,3 - screen grids; 4 - analyzing grids; 5 - isolators; a - field of view (FOV);
M - grid transparency;
the FOV of the analyzer (the flat angle at the FOV cone apex is equal 42°, two screen grids 2,3 and the double analyzing qrid 4. The screen grids are intended to generate a the flat parallel electric field of the analyzing grid 4.

Analyzers are equally spaced in three azimuthal planes and in the meridional plane they are mounted at three different angles relative to the vertical axis -15° (4 RPAs), 45° (12 RPAs) and 75° (12 RPAs). The total solid angle Ω is more than 2π (the flat angle is equal 190°).

The device operates in the following way. The ion flux with the energy $E>\mathrm{eU}_{\mathrm{an}}$ (where e-electron charge, U_{an} - analyzing voltage) enters one of the analyzers in the FOV - angle α. The energy and sign particle selection is made by applying a variable retarding potential $U_{a n}$ to the analyzing qrid of an RPA. In accordance with the electronic optical refraction law, the potential drop of the thin electric field between the grids 1 and 2 makes particles change their flight path :

where α, U_{1} - arrival angle and potential a particle sees when entering the electric field between the grids 5 (Fig.1a);
$\beta, U_{2} \quad$ - departure angle and the potential at the exit of the focusing field of the qrids 5.
Adjusting the potential $\mathrm{U}_{\text {foc }}$ value for a given device geometry helps coilect all particles with energy E which passed the analyzer within the angle α on the detector 6 . The focusing effect of the $\mathrm{U}_{\mathrm{foc}}$ can be seen in Fig. 2. The calculations show that the grid system with the radius 50 mm and applied potential $\mathrm{U}_{\mathrm{foc}} \leq 3000 \mathrm{~V}$ drastically changes the trajectories of particles entering this system, even at the most unfavorable angle,i.e., $\alpha>20^{\circ}$, to angles $\beta \leq 5^{\circ}$ at the exit of the system. It means that the particles are focused into a small spot on the detector which enables the use of small detectors and, in addition, decreases the UV light effect.

Depending on the experiment tasks particles may enter the system either through all 28 analyzers or sequentially through
each of them according to some program. By applying the potential $U \gg U_{a n}$ to the analyzing qrids of the analyzers one can cut off all analyzers except one. Arrival angles of particles are defined within 15° directly fror the TM-records and with an accuracy of $\leq 2^{0}$ after data processing.

To check the light exposure of the total FOV and thus remove "holes" in the total FOV, and to determine the minimum number of RPAs to cover the whole angular range and their location on the angular sphere the computer modeling was made. If the RPA FOV width is 42° then 24 RPAs are enough to cover the total FOV of one sensor, $2 \pi .28$ RPAs were chosen from the technological considerations (Fig. 3). This Figure shows the solid angle Ω in the plane (Mercator) projection. The abscissa shows angles in the azimuthal plane and the ordinate, in the meridional plane.

In this Figure the white circles correspond to the central axes of the RPA FOVs, the black area, to the angular region covered by one RPA and the shadowed area to the angular region covered by two or more analyzers.

The experimental check of some operating parameters was made on a special vacuum chamber. The positive nitrogen ion beams were generated in the vacuum chamber. The energy of beams was controlled in the range $5-50 \mathrm{eV}$. The beam density was (2-5) $\cdot 10^{-13} \mathrm{~A}_{\mathrm{CM}}{ }^{2}$. The inhomogeneity of the beam density was less than 0.5%. The beam divergence at the input aperture was less than $\pm 1.5^{\circ}$; since the distance to the ion source was made sufficiently large.

The ion beam parameters were measured by a special Beam Monitoring Sensor (BMS), that is a flat electrostatic energy spectrometer with retarding potential. The instrument under investigation and BMS sensor were mounted inside the vacuum chamber on the 2 -axis rotation platform needed to set them at different angles to the incoming beam and thus to measure angular characteristics. A secondary electron multiplier BЭY-7 (microchannel plates of shevron type) was utilized as a detector of fluxes; this detector was operating in the pulse counting mode. The experimental investigations were aimed at checking the energetic and angular RPA characteristics which are required during the calculations needed to interpret the parameters of measured ions.

Fig. 4 shows the angular characteristics of the RPA measured for

$\mathrm{U}_{\text {foc }} \mathrm{V}$
Fig.2. Angle of departure, β, versus focusing voltage $U_{\text {foc }}$ at the exit of the focusing grid set of MARIPROBE-D sensor.

Fig 3 Fields of view (FOV) of MARIPROBE-D sensor in Cartesian coordinates:
white small circles - FOV centres of 28 RPA in angular domain:
black area

- angular domain covered by one RFh.
shadowed area
- angular doman covered by at least two fPA.
ion energy $E=5,10,20$ and 50 eV and normalized to the maximum pulse count rate for the arrival angle of the particles $\alpha=0^{\circ}$. One can see from the Figure that the angular characteristics for different ion energies in the range 5 through 50 eV are close to the ideal. they, are symmetric relative to the axis and practically coincide for all energies.

The retarding characteristics of Fig. 5 show pulse count rates versus $U_{a n}$ and are also normalized to the maximum pulse counting rate for the arrival angle of the particles $\alpha=0^{\circ}$. These characteristics are also close to ideal, rectangular characteristics, due to the properly chosen design. Some deviation from ideal is the retarding slope of about 5%. It is mainly due to the energy spread in the beam. The effect of the inhomogeneity of the electric field mear the grid wires is less significant ($\leq 1 \%$).

At present in addition to the lab experiments with RPAs the mathematical simulation was made of the particle passage inside the sensor starting at the RPA aperture to the detector. All putentials were taken into account inside RPAs both and the sensor. The simulation program works in the interactive mode and allows visual inspection of particle trajectories and control of all parameters - both mechanical and electrical - of the sensor. Fig. 6 shows the example of the output of such simulation program.

In view of the future interpretation of the data acquired by ihis sensor it is very important to have a good knowledge of the angular and energetic characteristics of the sensor as a whole. The lab calibration of one such sensor with manual, not automated. experiment control will take at least several months. Since the experiment comprises two sensors for the whole angular coverage and more than one experiment set is required for the space mission it is unrealistic to make preflight calibration in acceptable time. In this connection an automated system for vacuum experiment control is under design specially for MARIPROBE experiment. This system includes the data acquisition. storage and data reduction and visualization features in addition to the means of exper 1 ment and vacuum chamber control. The means for the whole range of operations with microchannel plates are also included.

Fig. 4. Experimental angular characteristics of RPA for different ion energies:

- x -
$E=5 \mathrm{eV}$;
- 0 -
$\mathrm{E}=10 \mathrm{eV}$;
- + - E=20 eV;
- - -

$\mathrm{E}=50 \mathrm{eV}$;

Fig. 5. Experimental energetic characteristics of RPA for ion energy $E_{i}=50 \mathrm{eV}$

Fig. 6. Results of computer modeling of particle trajectories from outside RPA to the detection unit.

3. DESIGN

To connect the 28 RPA leadouts with electronic circuitry the wireiess connections are used on the internal surface of the sensor (of printed circuit type).

All grids are made of. tungsten and the sensor body of aluminum alloy. The RPAs and grid mounting elements are made of stainless steel. As an isolating material a composite polyimid material (polyimid) is used. This material is very light ($\rho=1.2 \mathrm{~g} / \mathrm{cm}^{3}$), and strong as a metal, it is characterized by a wide range of operation temperatures $\left(-100^{\circ}\right.$ through $\left.+200^{\circ} \mathrm{C}\right)$ and produces practically no organic outgassing. Its outgassing was measured to find out the possibility of its application in space. The measurements were made on the industrial mass analyzer. No organic traces except of clean gases ($\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ etc.) were detected in the operation temperature range ($-100 . .+200^{\circ} \mathrm{C}$).

Large diameter grids were made with the use of the mandrel with slots. The wires were put into the slots and galvanically fixed afterwards. The grid step was 0.75 mm and wire diameter was $25-30 \mu \mathrm{~m}$. Grids with a very small step - 40 and $100 \mu \mathrm{~m}$ were used to improve the RPA characteristics. The analyzing grid were double with 1 mm distance between the grids. The lab electrolytic bath experiments have shown that high focusing potential ($3-5 \mathrm{kV}$) was depressed to $10^{-6}-10^{-7}$ of its value in the region of the analyzing grid of RPAs.

All mechanical connections in the sensor were made by pressure contact welding and connections of the sensor case - by argon arc welding.

The total transparency of the grid set was 0.3 . To decrease the sun illumination effect all elements inside the sensor, including grids, were nickel blackened $\left(A_{s}, \varepsilon \geq 0.98\right)$. In addition light traps were used inside the sensor and most RPA were tilted in such a way that direct illumination of the sensor output hole was eliminated.

The external view of the sensor with the case for electronic circuitry is shown in Fig.7. Fig. 7 also shows the spherical segment grid of large diameter and the assembly of the focusing grid set. The sensor weight with the electronic case is 1 kg and its dimensions are $150 \times 150 \times 180 \mathrm{~mm}$.

Fig.7. a) MARIPROBE-D sensor; b) Focusing grid system; c) Segment focusing grid.

ШИРОКОУГОЛЬНОЕ УСТРОИСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ХОЛОДНОИ ПЛАЗМЫ

В.В.Афонин, В.В. Безруких, К.И.Грингауз,
А.П.Ремизов, Н.Ф.Смирнова, Институт космических исследований АН СССР, г.Москва

А.П.Беляшин, Л.И.Денщикова, В.Ф.Копылов
НПО ВАКУУММАШПРИБОР, г.Москва
BBEДEHИE

В исследованиях ионосферной плазмы прямыми методами для иэмерения основных параметров ионной компоненты обычно применяотся ионные ловушки - либо в "плавающем" режиме для измерения суммарной концентрации n_{i}, либо с анализом ионов по энергиям (АТП - анализаторы с тормозящим потенциалом) - для измерения ионной концентрации n_{i}, ионнои темературы T_{i} и масс основных ионов M_{i}; применяотся как сферические, так и плоские АТП. Достоинством сферического АТП является широки угол объора и повышенная по сравнениь с плоским ATII чувствительность, а недостатком - затруднены измерения температуры и масс ионов. Плоский АТП, хотя и имеет меньший обзор и меньшую чувствительность, показывает хорошие результаты при измерении T_{i} и M_{i} (табл.1)

Таблица 1
Качественное сравнение характеристик сферических и плоских ионных ловушек

Параметр	Ионные ловушки	
	Сферическая	Плоская
Поле зрентя, ср	$.4 \pi$	(0,1...0,8) x2л
Чувствительность	Высокая ($\cong 1$)	Низкая (0,01-0,1)
Концентрация ионов	Измеряется	Измеряется
Tемпература ионов $\mathrm{T}_{\text {i }}$	Измер. затруднено	Измеряется
Массы ссновньх ионовМ.	Измер. затруднено	Измеряется

В рамках проекта "Марс-94" раэработан прибор МАРИIIPOБ, ионная часть которого обвединяет достоинства как сферических, так и плоских АТП. Эта особенность особенно важна в случае отсутствия или недостаточного количества априорнвх данных об условиях работы прибора.

В настоящем докладе описывается ионная часть датчика МАРИ-IIPOБ-Д, предназначенная для измерения ионных параметров ионосферной плазмы, его конструкция (без узла регистрации), кратко технология иэготовления и результаты моделирования. Это устроиство обеспечивает измерение в широком угловом диапазоне (два датчика перекрыварт все пространство) следурщих параметров ионнои компоненты ионосферной плазмв (табл. 2).

Таблица 2

Параметр	Диапазон измерения
Ионная концентрация n_{i} \|	0.1-5.10 ${ }^{6} \mathrm{~cm}^{-3}$;
Ионная температура T_{1} ।	100-15000 K;
Массовыи состав M_{i} I	2-3 основные массы;
Вектор дрейа ионов V_{d} I	
величина	50 wc - $35 \mathrm{~km} / \mathrm{c}$;
разрешение по углам \|	15° - непосредственно по телеметрии
	$\begin{aligned} & 2^{0}-\text { после ооработки (при. } \\ & n_{i} \geq 100 \mathrm{~cm}^{-3} \text { ј } \end{aligned}$

При этом две поперечные компоненты дреифа измеряются непосредственно, а третья (продольная относительно датчика) определяется при наземнои обработке экспериментальных данньх.

ОПИСАНИЕ ИОННОИ ЧАСТИ ДАТЧИКА
Устроиство фактически представляет собой набор из 28 электродных наборов АТП без коллектора. Все 28 АТП работарт на один узел регистрации (коллектор) и обеспечивавт угловое перекрытие немного более 2π (плоский угол 190°). Угловая диаграмка кахдого АТП 42°, угловое расстояние мехду соседними АТП не более 30°.

Устройство датчика показано на рис.1,а. Электродная система содержит 28 плоских анализаторов с тормозящим потенциалом (АТП), расположенных в корпусе 2 по контуру сферического сегмента 3, ограниченного углом 100°. За выходами анализаторов, снабхенных коллиматорами 1 , концентрично сфере 3 установлены две сегментные фокусирурщие сетки 4 и 5, обе сферической фориы. Сетка 4 электрически соединена с корпусом 2 , на сетку 5 подается фокусирующии потенциал Чфок Для получения равномерного электического поля сетка 5 состоит из двух, находящихся под одним потенциалом, сеток. В центре сферы расположен детектор 6, которыи в зависимости от условии проведения эксперимента мохет иметь вид плоского

металлического коллектора, либо микроканальной пластины, либо более сложного регистрируощего устройства.

Рис.1,а. Принципиальная схема ионной электроднои системы (датчик ионов).

Кащдыћ из АТІІ (рис. $1, \sigma$) состоит из коллиматора 1, определяощего угловуо диаграмму направленности анализатора (конус при вершине $\alpha=42^{\circ}$), двух экранных сеток 2,3 и двойнои анализируощей сетки 4 :

Рис.1,б. Конструкция анализатора:
1 - коллиматор; 2,3 - экранные сетки; 4 - двойная аналиэирующая сетка; 5 - изоляторы; α - угол обзора анализатора;

M - коэффициент пропускания сеток.

металлического коллектора, либо микроканальной пластины, либо более сложного регистрируощего устроиства.

Рис.1,а. Принципиальная схема ионной электроднои системы (датчик ионов).

Кахдыи из АТП (рис. 1, б) состоит из коллиматора 1, определяющего угловуо диаграмму направленности анализатора (конус при вершине $\alpha=42^{0}$), двух экранных сеток 2,3 и двойной анализируощей сетки 4 :

Рис.1,б. Конструкция анализатора:
1 - коллиматор; 2,3 - экранные сетки; 4 - двоиная анализируощая сетка; 5 - изоляторы; α - угол обзора анализатора;

M - коэффициент пропускания сеток.

Экранные сетки предназначены для формирования плоскопараллельного электрического поля анализирующей сетки 4.

Анализаторы расположены равномерно в трех азимутальных плоскостях, а в меридиональной плоскости - под тремя разными углами к вєртикальной оси - 15° (4 АТП), 45° (12 АTП) и 75° (12 АTII). 0бщий телесный угол Ω превышает 2π (плоский угол равен 190°).

Устройство работает следуюиим образом. Поток ионов с энергиеи $E>\mathrm{eU}_{\mathrm{aH}}$ (где е - элементарный заряд, U_{aH} - аналиъирующее напряжение) попадает в один из анализаторов в пределах угла объора α. Селекция частиц по энергиям и знаку осуществляется путем подачи на анализирующую сетку анализатора изменяющегося тормозящего потенциала $\mathrm{U}_{\mathrm{aн}}$. В соответствии с законом электронно-оптического преломления в результате скачка потенциала, создаваемого тонкослойным электрическим полем сеток 1,2 , частицы изменят направление своего движения как

$$
\begin{equation*}
\frac{\sin \beta}{\sin \alpha}=\sqrt{\frac{\mathrm{U}_{1}}{U_{2}}} \tag{1}
\end{equation*}
$$

где α, U_{1} - угол и потёнииал, под которыми частица влетает в поле сеток 5 , а β, U_{2} - вылетает.
Подобрав соответствующее значение потенциала Uфок для данной геометрии устройства, можно собрать все частицы с энергией Е, прошедшие анализатор в пределах углов α, на детектор 6. фокусирующий эффект поля $U_{\text {фок }}$ иллострирует рис. 2. Расчеты показываот, что система сеток с радиусом 50 мм и приложенным потенциалом $\mathrm{U}_{\text {фок }} \leq 3000 \mathrm{~B}$ резко иэменяет траектории частиц, влетарщих в эту систему даже под самым неблагоприятным углом $\left(\alpha=90^{\circ}\right)$, до углов. $\beta \leq 5^{\circ}$ на выходе из системы. Это означает, что частицы фокусируются в небольшое пятно на детекторе, что способствует применению малогабаритных детекторов и, кроме того, ограничивает световой поток на их входе.

В зависимости от задач эксперимента частицы могут проходить либо одновременно через все 28 АТП, либо последовательно череэ. каждый иъ них по заданной программе. Запереть все анализаторы, кроме одного, можно, подав на их аналиэирующие сетки потенциал $\mathrm{U} \gg \mathrm{U}_{\text {ан }}$.

Угол прихода частиц определяется с точностью 15° непосредственно по виду ТМ-записи и с точностьо 2^{0} после обработки данньх.

Для проверки "засветки" общего поля зрения с цельр исклрчения "дыр" в общем поле зрения, определения минимального количества АТП

для перекрытия общего поля зрения и их расположения на сфере было проведено моделирование на ЭВМ. При ширине диаграммы направленности АТП 42° для полного перекрытия общего поля зрения 2π достаточно иметь 24 АТП. Из технологических соображений было выбрано 28 АТП (рис.3). На этом рисунке телесныи угол Ω представлен на плоскости (прсекция Меркатора), где по оси абсцисс отложены углы(в град.) в
B, zoad.

Рис.2. Зависимость угла β выхода частиц из фокусирующего поля от напряжения $U_{\text {фок }}$ для различных энергий ионов.

Рчс.3. Поля зрения анализаторов датчика МАРИПРОБ-Д в прямоугольной системе координат.

азимутальнои плоскости, а по оси ординат - в меридиональнои. На этом рисунке белые кружки показывают расположение центров полей зрения АТП, черныи фон - область углов, охваченных одним анализатором, и штрихованный - двумя или более анализаторами.

Экспериментальная проверка некоторых рабочих характеристик датчика проводилась на специальной вакуумной установке. В вакуумной камере создавались пучки положительных ионов азота, энергия которых регулировалась в пределах 5-50 эВ. Плотности пучков составляли (2-5) 10^{-13} А/см ${ }^{2}$. Неравномерность плотности. в сечении входного отверстия не превышала $0,5 \%$, расходимость пучков ионов вблизи входного отверстия - $\pm 1,5^{\circ}$ от оси пучка; что достигалось достаточным удалением источника ионов от датчика.

Параметры ионных пучков иэмерялись специальным датчиком контроля пучка (ДКІІ), представляющим собой плоскии электростатическии спектрометр с тормозящим потенциалом.

Датчик ДКП и исследуемый прибор закреплялись в вакуумной камере на двухкоординатном поворотном устройстве, которое позволяло устанавливать их под различными углами к направлению потока ионов и снимать тем самьм угловые характеристики.

В качестве детектора исследуемых потоков использовался вторичный электронный умножитель ВЭУ-7 (микроканальная пластина шевронного типа), работающий в режиме счета импульсов. Целью экспериментальных исследований являлась проверка энергетических и угловых характеристик АТП, знание которых необходимо при проведении интерпретационных расчетов при определении параметров измеряемых ионов.

На рис. 4 приведены угловые характеристики АТП, снятые для энергий ионов $E=5,10,20,50 э В$, пронормированные $к$ максимальной скорости счета импульсов при угле прихода частиц $\alpha=0^{\circ}$. Из этого рисунка видно, что угловые характеристики для различных энергии от (5 до 50 эВ) близки к идеальньм, симметричны относительно оси ординат и практически совпадают для всех значений энергии.

Приведенные на рис. 5 энергетические характеристики анализаторов представляют собой зависимость скорости счета импульсов от анализирующего напряжения $U_{\text {ан }}$ и так же пронормированы к максимальной скорости счета при угле прихода частиц $\alpha=0^{\circ}$. Полученные энергетические характеристики анализаторов благодаря правильно выбранной конструкции также блиъки к идеальным - прямоугольным. Некоторое отклонение от идеальнои характеристики имеет место на участке запирания в виде спада, который составляет при-

Рис.4. Угловые характеристики АТП для разных энергии ионов E " $\mathrm{x"}$ - $\mathrm{E}=5$ з 3 ; "о" - $\mathrm{E}=10$ эВ; "+" - $\mathrm{E}=20$ эВ; "•" - $\mathrm{E}=50$ эВ

мерно 5\%. Это объясняется в основном разбросом энергии ионов в пучках. Меньшее влияние ($\leq 1 \%$) оказывает неравномерность электрического поля проволок вблизи сеток.

Рис.5. Энергетические характеристики АТП для энергии ионов 50 эВ.

Помимо лабораторной отработки АТП проведено математическое моделирование процессов прохождения частиц через детектор от входной апертуры АТП до узла регистрации. В расчетах учтены все потенциалы как внутри АТП, так и в основной части датчика. Моделирующая программа работает в диалого-виэуальном режиме и позволяет визуально контролировать траектории частиц и оперативно изменять все - как механические, так и электрические параметры датчика (рис. 6).

МАРИПРОБ

AПEPTYPA. ААТЧНК

E1	. $58.8 \mathrm{3B}$	Urpa	9.8 B
E2	$=5869.8$ эВ		
Ris	$=5.88 \mathrm{Mm}$	Rizs	$=6.88 \mathrm{MM}$
Rgrid	$=5,80 \mathrm{~mm}$	Rgrid2	$=4.68$

Рис.6. Результаты расчета прохождения ионов через анализируощув часть датчика.

Весьма вахно с точки зрения интерпретации данных, которые будут получены при помощи этого датчика, знатв точные угловые и энергетические характеристики датчика в целом после его окончательной сборки. Лабораторная калибровка одного такого датчика при неавтоматизированном ("ручном") управлении экспериментом заимет несколько месяцев. Поскольку в комплект прибора для полного перекрытия пространства должны входить два таких датчика, а для проведения эксперимента в космосе требуется обычно не один комплект прибора, то это означает, что без автоматизации процесс калибровки провести в приемлемое время нереально. В связи с этим спецпально для эксперимента МАРИПРОБ разрабатывается система автоматизированного управления вакуумным лабораторным экспериментом, включашая помимо средств управления прибором и вакуумной ка-

мерои также средства сбора, хранения, оперативнои обработки и визуализации данных. Кроме того, в эту систему входят средства для "роверки и отбора МКП.

ОПИСАНИЕ КОНСТРУКЦИЯ

Для соединения выводов 28 АТП с измерительнои электрониной применена беэпроволочная система выводов на внутренней поверхности сферы (типа печатного монтажа)

Все сетки выполнены из вольфрама, корпус - из аломиниевого сплава, а корпуса АТП и все элементы крепления сеток - из нержаверщей стали, В качестве изолирующего материала применен композиционныл полиимидныи материал (полиимид), отличающийся легкостью ($\rho=1,2 г /$ см 3), прочностьд металла, широким диапазоном рабочих температур (от -100 до $+200^{\circ} \mathrm{C}$) и практически отсутствием органических газовыделении. С цельр выяснения возможности применения этого материата в датчике были проведены измерения его газовыделения. Измерения проводились при помощи промышленного масс-анализатора. В рабочем диапазоне температур (от -100 до $+200^{\circ} \mathrm{C}$) помимо выделения чистых газов ($\mathrm{CO}_{2} \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ и др.) не обнаружено даже следов органики.

Сетки большого диаметра изготавливались при помощи оправки с бороздками, в которые укладывались проволочки c последующим гальваническм закреплением. Паг сеток 0,75 мм, диаметр проволочек 25-30 ма.

С цельр улучшения характеристик АТП в них применены сетки с очень мальм шагом - 40 и 100 мк.г Анализирующая сетка - двойная с расстоянием медду сетками 1 мм. Лабораторная отработка с испольэованием электролитической ванны позволила получить провисание болњшого ($3-5 \mathrm{kB}$) потенциала фокусируощих сеток в области аналмзирурщей сетки АТП порядка $10^{-6}-10^{-7}$.

Все соединения выполнены контактной сваркои, а соединения корпуса - аргоно-дуговой сваркои.

Общая прозрачность (пропускание) полного сеточного набора равна 0.3.

Для уменьшения влияния засветки прибора солнцем для всех внутренних элементов датчика, включая сетки, применено никелевое чернение ($A_{S}, \varepsilon \geq 0,98$). Кроме того, внутри датчика предусмотрены световые ловушки, а большинство анализаторов развернуты так, чтобы предотвратить засветку детектора.

Внешний вид датчика вместе с корпусом для электроники показан на рис.7. Там же показана сегментная сферическая . сетка большого диаметра (внизу) и система фокусируюших сеток в сборе (в средней части).

Масса датчика вместе с корпусом для электроники 1 кг, габаритные размеры $150 \times 150 \times 180$ мм.

Рис.7. Внешний вид датчика МАРИПРОБ-Д (а); система фокусируощих сеток в сборе (σ); сегментная сферическая сетка большого размера (в).

