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I. Effects of local geometry on Accumulation and 
Desorption of ice

Michael  Hecht, Jet Propulsion Laboratory

• Importance of local geometry on a local scale
• Importance of local geometry on a global scale
• CO2 roughness and albedo
• H2O temperature variations & humidity
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Topography, Topography, Topography

Several papers have addressed thermal balance of small 3-D structures on Mars 
(many have addressed slopes). Examples:
– Svitek & Murray, 1990 (rock shadows) 
– Ingersoll, Svitek Murray, 1992 (spherical crater bowls)
– Kossacki, Markiewicz & Keller, 2000 (trenches), 2001 (roughness). 
– Hecht, 2002 (gullies)
– Schorgofer, Aharonson, Khatiwala, 2002 (slope streaks)
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Importance of local variation on a global scale

N. Pole (peak)

N. Pole (mean)

• Peak or mean insolation (at poles) varies 
with orbital elements by factor of ~2.

• Albedo can vary by factor of 4 or more 
(see Kieffer et al. ‘00)

• Apparent emissivity can vary with 
geometry by factor of 2 or more (see 
Ingersoll et al. ‘92, Hecht ‘02).

• Sublimation varies as power law of 
temperature, so a small fraction of the 
surface can impact atmosphere

• ...and accumulated frost could melt in 
favorable geometries (See Hecht, Icarus
2002). Local present conditions may 
mimic average past conditions.
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Physical Processes
1. Sun-facing surfaces get warm 

(>273K) anywhere, anytime
2. Thermal gradients are large 

(15 cm scale length)
3. Convection is inefficient, 

sublimation & condensation 
efficient at moving heat

4. H2O sublimation is rapid in 
sunlight: ~1 mm/hr at 273K, 
100 W/m2, without boiling

5. Apparent emissivity is low in 
sheltered areas

6. Peak insolation increases on 
slopes

7. Total albedo decreases with 
roughness, dust. For CO2 ice, 
water could be a factor.
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Radiation across bottom of 273K cavity to 
cold sky for various height/diameter ratios. 
Even for shallow depressions, it gets warm 

near the walls when the sun shines in
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CO2 roughness

• Low sun, (and high albedo) 
induces roughening of surface, 
resulting in decrease of albedo. 
At present, for example, this 
favors a darker N.polar 
seasonal cap, (Ingersoll, 
Svitek, Murray ‘90) and is 
consistent with insolation 
dependence of CO2 albedo
(Paige ‘85, Kieffer et  al. ‘00). 
H2O behaves similarly.

• In polar night, local 
depressions radiate less and 
CO2 “grows” around them, 
causing roughening. This effect 
is mitigated by precipitation or 
settling.
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Local & temporal variation in surface temperature

“Moon-like” 
approximation of 
equilibrium polar 

temperature for icy 
surface over 150,000 

yrs (infinite CO2
reservoir, neglecting 
H2O latent heat and 

conduction into 
surface)

Heat retained by surface varies >50°C with albedo, slope, 
apparent emissivity, over and above orbital variations
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Variations in atmospheric water content

• Evaporative loss (hence 
atmospheric H2O) is 
exquisitely sensitive to 
heat balance. Small areas 
may dominate.

• Humidity also highly 
pressure sensitive (but no 
strong break at triple 
point)

• If high humidity results in 
darkening of permanent 
CO2 cap, pressure 
variations may be 
dampened



8HEND Workshop, June 9, 2003

Conclusions

• Roughness-induced or other variations in albedo, emissivity, or 
slope distribution are more important than orbital elements for 
determining local temperature.

• Roughening of CO2 and H2O by sublimation is insolation-
dependent, possibly damping temperature variability. Roughening 
of CO2 may be intrinsic to condensation. 

• Atmospheric water vapor varies over orders of magnitude with 
temperature and pressure. This implies that:
– Humidity may be sensitive to tail of temperature distribution.
– If albedo of CO2 cap is sensitive to humidity, feedback may moderate total 

pressure variations.
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Addendum

Kieffer & Zent,
“Mars Book”
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II. How to make liquid water on Mars
Michael Hecht

Jet Propulsion Laboratory, Caltech

How to make meltwater (from 1st 2nd principles) :

1. Tmelt>Tfrost, so must have circulation of water
- Key timescale may be as short as 25,500 years
- Cold trapping is important

2. Sublimation is fast, so warming must be fast
- Annual phenomenon?
- CO2 buffering important

3. Melting: Geomorphology trumps obliquity
- Variations in albedo, slope, apparent emissivity, thermal inertia, 

geochemistry, opacity, etc. >> than orbital element effects…
- But only for melting, not deposition 
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Circulation model
• Potential meltwater sites are by definition geologically 

unstable (T>frostpoint). Cyclical recharging required.
– Frost condensation or snow precipitation viable
– Currently only 10’s of precipitable microns available
– Coldtrapping may add x10-100 (Svitek & Murray)

• Orbital cycle model (see plot)
– Calculated annual peak sublimation from poles (like Fanale)
– Included latent heats, optical properties of CO2 and H2O
– Ignored atmosphere, thermal inertia, etc.
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Calculated humidity variation
N. Pole sublimation (radiative balance & latent heats)
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Model results

• 100x increase on 51 kyr cycle for each pole (25.5 
kyrs?) ! mms of precipitation/condensation, 
coldtrapped to 10’s of cm equivalent column.

• 40° obliquity adds only ~5x more
• Process may quench due to lag deposits of dust
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Why is this so?

– Power law dependence 
on temperature “rectifies” 
periodic oscillation

– In warm periods, 
sublimation transitions 
from temperature-limited 
(power law) to heat-
limited (linear)
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Sublimation

• Relatively rapid sublimation competes with melting
– Rate is equivalent to ~60°C water on Earth (~1 mm/hr at 273K)
– Robust seasonal water cycle is thus more compelling as source 

of liquid than long-term movement of water table
– Temperature change must be rapid for melting – springtime 

buffering by CO2 frost may be important to hold water until 
sufficient insolation is available.
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CO2 buffering

CO2 burns off close 
to solstice, when 
peak heating occurs 
for pole-facing 
slopes
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Melting

• Local contemporary conditions can emulate zonal 
conditions from other epochs
– Peak or mean insolation (at poles) varies with orbital elements only 

by factor of ~2.
– Albedo can vary by factor of 4 or more (see Kieffer et al. ‘00)
– Apparent emissivity can vary with geometry by factor of 2 or more 

(see Ingersoll et al. ‘92, Hecht ‘02).
• Parameter space for modeling is huge. Significant portions 

of the parameter space allow for melting. Hence…
• Accumulated frost can seasonally melt in many geometries 

in nearly any epoch. See Hecht, Icarus (2002). 
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Local v. temporal variation in surface temperature

“Moon-like” 
approximation of 
equilibrium polar 

temperature for icy 
surface over 150,000 

yrs (infinite CO2
reservoir, neglecting 
H2O latent heat and 

conduction into 
surface)

Heat retained by surface varies >50°C with albedo, slope, 
apparent emissivity, over and above orbital variations
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Conclusions

• Direct snow/frost melt is a robust mechanism for 
gully formation.
– Process should be source limited. Significant that 

latitudes and orientation preference of gullies favor 
snow/frost accumulation. 

– Frost should be low density (like terrestrial hoarfrost). 
Subsurface melting, avalanches, other phenomena 
associated with terrestrial hoarfrost might occur

– Ubiquitous presence of alcoves are a problem for such 
models, but not inexplicable. Examples exist on Earth 
(P. Lee) 

• Pulses of water may be injected on ~25KY centers
– Millimeters equivalent average deposition expected
– 10-100x concentration possible from cold-trapping
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III. Odyssey notes
Michael  Hecht, Jet Propulsion Laboratory

• Periodic signals in HEND, GRS, MARIE are 
sensitive to: subsurface position, energy, solar 
activity.

• Signals in MARIE are modulated during SPEs
• HEND S6 signals seem similar to GRS signals 

except for occasional sudden changes in 
amplitude
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>0.03 MeV

0.32-1.75 MeV

0.09-0.32 MeV
0.06-0.09 MeV

>0.06 MeV

1.75-11.8 MeV
>11.8 MeV

>20 MeV
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Latest SPE (MARIE data)

MARIE

GOES 8

May June
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Oscillations during SPEs

(MARIE movie courtesy of Ron Turner)
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