|. Effects of local geometry on Accumulation and
Desorption of ice

Michael Hecht, Jet Propulsion Laboratory

* Importance of local geometry on a local scale
* Importance of local geometry on a global scale
* CO, roughness and albedo

* H,O temperature variations & humidity
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Topography, Topography, Topodraphy

Several papers have addressed thermal balance of small 3-D structures on Mars
(many have addressed slopes). Examples:

— Svitek & Murray, 1990 (rock shadows)

— Ingersoll, Svitek Murray, 1992 (spherical crater bowls)

— Kossacki, Markiewicz & Keller, 2000 (trenches), 2001 (roughness).
— Hecht, 2002 (gullies)

— Schorgofer, Aharonson, Khatiwala, 2002 (slope streaks)

Model
P, surface

Real
surfaces

White mountain (CA) penitentes ~ Greenland moulin
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Importance of local variation on a global scale

Peak or mean insolation (at poles) varies
with orbital elements by factor of ~2.

Albedo can vary by factor of 4 or more
(see Kieffer et a. ‘00)

Apparent emissivity can vary with
geometry by factor of 2 or more (see
Ingersoll et a. ‘92, Hecht ‘02).

Sublimation varies as power law of
temperature, so asmall fraction of the
surface can impact atmosphere

...and accumulated frost could melt in
favorable geometries (See Hecht, Icarus
2002). Local present conditions may
mimic average past conditions.
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Physical Processes

1.

2.

Sun-facing surfaces get warm
(>273K) anywhere, anytime

Thermal gradients are large
(15 cm scale length)

Convection isinefficient,
sublimation & condensation
efficient at moving heat
H,O sublimation israpid in
sunlight: ~1 mm/hr at 273K,
100 W/m?, without boiling
Apparent emissivity islow in
sheltered areas

Peak insolation increases on
slopes

Total abedo decreases with

roughness, dust. For CO, ice,
water could be afactor.
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CO, roughness

Low sun, (and high albedo)
induces roughening of surface, "*
resulting in decrease of albedo.
At present, for example, this

favors a darker N.polar 08|

seasonal cap, (Ingersall,
Svitek, Murray ‘90) and is
consistent with insolation
dependence of CO, albedo
(Paige ‘85, Kieffer et al. ‘00).

haight {(m)

3t

H,O behaves similarly. 02|

In polar night, local
depressions radiate less and

CO, “grows’ around them, s

causing roughening. This effect
IS mitigated by precipitation or
settling.
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Local & temporal variation in surface temperature
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Variations in atmospheric water content

« Evaporative loss (hence
atmospheric H,0) is
exguisitely sensitive to
heat balance. Small areas
may dominate.

e Humidity also highly
pressure sensitive (but no
strong break at triple
point)

e If high humidity resultsin
darkening of permanent
CO, cap, pressure
variations may be
dampened
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Conclusions

e Roughness-induced or other variations in albedo, emissivity, or
slope distribution are more important than orbital elements for
determining local temperature.

* Roughening of CO, and H,O by sublimation is insolation-
dependent, possibly damping temperature variability. Roughening
of CO, may be intrinsic to condensation.

e Atmospheric water vapor varies over orders of magnitude with
temperature and pressure. Thisimplies that:

— Humidity may be sensitive to tail of temperature distribution.

— If albedo of CO, cap is sensitive to humidity, feedback may moderate total
pressure variations.
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. Fig. 4. Variation of CO, surface pressure with obliquity for a stmple polar energy balance model.
K | Effel‘ & Zent, The nominal mode! is for eccentricity of 0, atmospheric advection V of 0 W m~2, frost albedo
‘“ " A of 0.65, and frost emissivity of 1.0. The effects of small independent chanees in emissivity,
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heating, albedo and eccentricity are shown. Three curves show the dramatic effect of an albedo
that depends upon instantaneous insolation, in which case eccentricity and argument of perih-
elion become important. With estimates for the present parameters, ¢ = 0.95, H = 3.,

e = 0.0934, w = 336.1, this simple mode! predicts a CO, surface pressure of 5.0 mbar at
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ll. How to make liquid water on Mars

Michael Hecht
Jet Propulsion Laboratory, Caltech

How to make meltwater (from 25 2" principles) :

1. T, Thost: SO Must have circulation of water
- Key timescale may be as short as 25,500 years
- Cold trapping is important

2. Sublimation is fast, so warming must be fast
- Annual phenomenon?
- CO, buffering important

3. Melting: Geomorphology trumps obliquity

- Variations in albedo, slope, apparent emissivity, thermal inertia,
geochemistry, opacity, etc. >> than orbital element effects...

- But only for melting, not deposition
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Circulation model

» Potential meltwater sites are by definition geologically
unstable (T>frostpoint). Cyclical recharging required.
— Frost condensation or snow precipitation viable
— Currently only 10’s of precipitable microns available
— Coldtrapping may add x10-100 (Svitek & Murray)

e Orbital cycle model (see plot)
— Calculated annual peak sublimation from poles (like Fanale)
— Included latent heats, optical properties of CO, and H,O
— lgnored atmosphere, thermal inertia, etc.
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Calculated humidity variation
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Model results

e 100x increase on 51 kyr cycle for each pole (25.5
kyrs?) - mms of precipitation/condensation,
coldtrapped to 10’ s of cm eguivalent column.

e 40° obliquity adds only ~5x more
* Process may quench due to lag deposits of dust

HEND Workshop, June 9, 2003
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Why Is this so?

— Power |law dependence
on temperature “rectifies’
periodic oscillation

— Inwarm periods,
sublimation transitions
from temperature-limited
(power law) to heat-
limited (linear)

HEND Workshop, June 9, 2003
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Sublimation

« Relatively rapid sublimation competes with melting
— Rate s equivalent to ~60°C water on Earth (~1 mm/hr at 273K)

— Robust seasonal water cycle isthus more compelling as source
of liquid than long-term movement of water table

— Temperature change must be rapid for melting — springtime
buffering by CO, frost may be important to hold water until
sufficient insolation is available.
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CO, buffering

Gullies Seen in MOC Images
and Associations With Spots
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Melting

e Local contemporary conditions can emulate zonal

conditions from other epochs
— Peak or mean insolation (at poles) varies with orbital elements only

by factor of ~2.
— Albedo can vary by factor of 4 or more (see Kieffer et al. ‘00)

— Apparent emissivity can vary with geometry by factor of 2 or more
(seeIngersoll et al. ‘92, Hecht ‘02).
o Parameter space for modeling is huge. Significant portions
of the parameter space allow for melting. Hence...
e Accumulated frost can seasonally melt in many geometries
In nearly any epoch. See Hecht, Icarus (2002).
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Local v. temporal variation in surface temperature
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Conclusions

e Direct snow/frost melt is a robust mechanism for
gully formation.

— Process should be source limited. Significant that
|atitudes and orientation preference of gulliesfavor
snow/frost accumulation.

— Frost should be low density (like terrestrial hoarfrost).
Subsurface melting, avalanches, other phenomena
associated with terrestrial hoarfrost might occur

— Ubiquitous presence of alcoves are a problem for such
models, but not inexplicable. Examples exist on Earth
(P. Lee)

» Pulses of water may be injected on ~25KY centers
— Millimeters equivalent average deposition expected
— 10-100x concentration possible from cold-trapping
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l1l. Odyssey notes

Michael Hecht, Jet Propulsion Laboratory

 Periodic signals in HEND, GRS, MARIE are
sensitive to: subsurface position, energy, solar
activity.

e Signals in MARIE are modulated during SPESs

« HEND S6 signals seem similar to GRS signals
except for occasional sudden changes In
amplitude

HEND Workshop, June 9, 2003 20



Starting October 14, 2003
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Latest SPE (MARIE data)
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Oscillations during SPES

(MARIE movie courtesy of Ron Turner)
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