МОДЕЛЬ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ (СУША, ОКЕАН) С УЧЕТОМ ПОЛЯРИЗАЦИИ ИЗЛУЧЕНИЯ

Т.А. Сушкевич, С.А. Стрелков, С.А. Максакова, А.К. Куликов, А.Н. Волкович

tamaras@keldysh.ru

Институт прикладной математики имени М.В. Келдыша РАН

Четвертая всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса"

13-17 ноября 2006 года, Москва, ИКИ РАН

Home	e Page
Title	Page
Con	tents
	••
Page	l of <mark>64</mark>
Go I	Back
Full S	Screen
Cle	ose
Q	uit

This is Slide No. 2.

В 2005 году более 40 стран подписали Международное Соглашение о глобальном мониторинге Земли с целью прогнозирования и оперативного обнаружения и анализа опасных явлений, стихийных бедствий, чрезвычайных экологических последствий техногенных и природных катастроф.

В конце 2004 года фирма IBM по заказу NASA запустила в США самый мощный суперкомпьютер (на 135 тысяч процессоров).

Для информационного обеспечения перспективных космических наблюдений требуется разработка новых методов, алгоритмов, программ для решения прямых и обратных задач теории переноса излучения в природных средах с параллельными вычислениями на суперкомпьютерах.

This is Slide No. 3.

МЕТОД ФУНКЦИЙ ВЛИЯНИЯ И ЛИНЕЙНО-СИСТЕМНЫЙ ПОДХОД

Рассматривается задача дистанционного зондирования поверхности через атмосферу планеты. Развит эффективный подход атмосферной коррекции спутниковой информации с учетом поляризации излучения.

Модель передаточных свойств атмосферы представлена в форме векторного линейного функционала — интеграла суперпозиции, лежащего в основе классического линейно-системного подхода.

Home	e Page	
Title	Page	
Con	Contents	
••	++	
4		
Page	3 of <mark>64</mark>	
Go	Back	
Full	Screen	
CI	ose	
Ci		

This is Slide No. 4.

Векторный передаточный оператор построен математически строго и физически корректно методом функций влияния и пространственно-частотных характеристик.

Функции влияния и пространственно-частотные характеристики системы "атмосфера — поверхность планеты" являются ядрами функционалов и объективными характеристиками, инвариантными относительно конкретных структур зондируемых объектов, условий освещенности и наблюдения.

Пространственно-частотные характеристики вводятся как фурье-образы функции влияния по горизонтальным координатам.

This is Slide No. 5.

В любой активной или пассивной системе дистанционного зондирования земной поверхности всегда присутствуют четыре главные компоненты:

(1) "сценарий", "сцена", т.е. распределение яркости наблюдаемых объектов или ландшафта;

- (2) атмосферный канал передачи изображения;
- (3) прибор регистрации электромагнитных волн;
- (4) комплекс обработки и распознавания изображения.

В трех компонентах проявляется влияние атмосферы: атмосферно-оптические механизмы воздействуют на формирование "сценария", на перенос его изображения через среду и учитываются в радиационной коррекции при анализе "сцен".

This is Slide No. 6.

Радиационное поле Земли формируется под влиянием двух компонент системы переноса излучения: атмосферы и земной поверхности (САП). Связи между радиационными характеристиками и параметрами атмосферы и земной поверхности описываются решениями краевой задачи теории переноса излучения, когда важно использовать теорию многократного рассеяния.

Сложность задачи заключается в многопараметричности модели среды, большом разнообразии процессов трансформации энергии Солнца, вариантов визирования и способов измерений.

Приходится иметь дело с краевыми задачами для интегродифференциального кинетического уравнения, описывающего перенос излучения в рассеивающих, поглощающих, излучающих, преломляющих, поляризующих средах с одномерной, двумерной или трехмерной плоской или сферической геометрией.

This is Slide No. 7.

Можно выделить следующие типы радиационных задач, требующих учета влияния поверхности планеты, отражаю-щей излучение.

Первый тип - это задачи энергетики и радиационного баланса Земли, когда источником служит радиация Солнца и собственное излучение планеты. Такие задачи решаются преимущественно в приближении плоской модели земной оболочки с неявным или явным учетом вклада однородной ламбертовой или неортотропной подстилающей поверхности.

Второй тип - это задачи дистанционного зондирования атмосферы и облачности, когда земная поверхность является помехой.

Третий тип – это задачи дистанционного зондирования земной поверхности, когда необходимо устранить (провести атмосферную коррекцию) или достоверно учесть влияние атмосферы.

This is Slide No. 8.

Как показал анализ состояния проблемы учета и дистанционного зондирования земной поверхности все **многообразие подходов** сводится к трем основным.

- **Первым** появился неявный способ учета отражающей поверхности.

- **Второй** это явный способ методом ФВ и ПЧХ.
- Третий это функционалы и сопряженные уравнения.

This is Slide No. 9.

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА СКАЛЯРНОЙ ЗАДАЧИ

Продемонстрируем методику расчета передаточного оператора с распараллеливанием вычислений на примере скалярной задачи, т.е. без учета поляризации.

Рассмотрим задачу переноса излучения в рассеивающем, поглощающем и излучающем горизонтально-однородном плоском слое, неограниченном в горизонтальном направлении $(-\infty < x, y < \infty, r_{\perp} = (x, y))$ и конечном по высоте $(0 \le z \le h)$.

Для удобства записи граничных условий вводим множества

$$t = \{z, r_{\perp}, s : z = 0, s \in \Omega^+\}, \ b = \{z, r_{\perp}, s : z = h, s \in \Omega^-\}.$$

Home Page Title Page Contents Page 9 of 64 Go Back Full Screen Close Quit

This is Slide No. 10.

Интенсивность (энергетическая яркость) излучения $\Phi(r,s)$ в САП находится как решение общей краевой задачи (ОКЗ при $\hat{R} \not\equiv 0$) теории переноса

$$\cos\vartheta \,\frac{\partial\Phi}{\partial z} \,+\, \sin\vartheta \cos\varphi \,\frac{\partial\Phi}{\partial x} \,+\, \sin\vartheta \sin\varphi \,\frac{\partial\Phi}{\partial y} \,+\, \sigma(z)\Phi(x,y,z,\vartheta,\varphi) \,=\,$$

$$= \sigma_{s}(z) \int_{0}^{2\pi} d\varphi' \int_{0}^{\pi} \gamma(z, \vartheta, \varphi; \vartheta', \varphi') \Phi(x, y, z, \vartheta', \varphi') \sin \vartheta' d\vartheta' + F^{in}(z, \vartheta, \varphi),$$

$$\Phi(x, y, z = 0, \vartheta, \varphi) |_{t} = F^{0}(x, y, \vartheta, \varphi),$$

$$\Phi(x, y, z = h, \vartheta, \varphi) |_{b} = F^{h}(x, y, \vartheta, \varphi) +$$

$$+ \varepsilon \int_{0}^{2\pi} d\varphi^{+} \int_{0}^{\pi/2} q(x, y, \vartheta, \varphi; \vartheta^{+}, \varphi^{+}) \Phi(x, y, h, \vartheta^{+}, \varphi^{+}) \sin \vartheta^{+} d\vartheta^{+}.$$
Full Screen

Home Page

Title Page

Contents

Close

Quit

This is Slide No. 11.

Общую краевую задачу запишем в компактной форме

$$\hat{K}\Phi = F^{in}, \quad \Phi|_t = F^0, \quad \Phi|_b = \varepsilon \hat{R}\Phi + F^h \tag{1}$$

с линейными операторами: оператор переноса

$$\hat{D} \equiv (s, grad) + \sigma(z) = \hat{D}_z + (s_{\perp}, \frac{\partial}{\partial r_{\perp}}), \quad \hat{D}_z \equiv \mu \frac{\partial}{\partial z} + \sigma(z);$$

интеграл столкновений, описываемый оператором

$$\hat{S}\Phi\equiv\sigma_s(z)\int_\Omega\gamma(z,s,s')\Phi(z,r_\perp,s')\,ds',\ ds'=d\mu'd\varphi',\ \hat{S}(1)\leq 1.$$

интегродифференциальный оператор $\hat{K} \equiv \hat{D} - \hat{S}$; одномерный оператор $\hat{K}_z \equiv \hat{D}_z - \hat{S}$. Home Page

Title Page

Contents

Page 11 of 64

Go Back

Full Screen

Close

Quit

This is Slide No. 12.

Оператор отражения

$$[\hat{R}\Phi](h,r_{\perp},s) \equiv \int_{\Omega^+} q(r_{\perp},s,s^+)\Phi(h,r_{\perp},s^+)\,ds^+ \qquad (2)$$

является равномерно ограниченным оператором: $\hat{R}(1) = q^*(r_{\perp},s) \leq 1.$

Все многообразие подстилающих поверхностей (без учета возвышений и орографии), описываемое оператором (2), и граничных источников можно объединить в четыре основных типа:

- горизонтально-однородные изотропные;
- горизонтально-однородные анизотропные;
- горизонтально-неоднородные изотропные;
- горизонтально-неоднородные анизотропные.

This is Slide No. 13.

Если хотя бы одна из функций F^0 , F^h , q зависит от r_{\perp} , то решение ОКЗ (1) определяется в пятимерном фазовом объеме $(x, y, z, \vartheta, \varphi)$, и **ОКЗ не разрешима численны-**ми методами без ограничения горизонтальных размеров слоя. Решения трехмерных **ОКЗ** относятся к классу обобщенных решений.

Первыми в теории переноса аппарат функций влияния использовали

А.С. Монин (Статистическая интерпретация рассеяния микрочастиц // Теория вероятностей и ее применение. 1956. Т. І. Вып. 3. С. 328—343.);

Б.Б. Кадомцев (О функции влияния в теории переноса лучистой энергии // Докл. АН СССР. 1957. Т. 113. № 3. С. 541-543).

Значительную роль сыграла "подсказка" в учебнике по математической физике для МФТИ академика В.С. Владимирова, где рассматривается уравнение переноса с источником в правой части.

This is Slide No. 14.

Краевая задача (1) линейная и ее решение можно искать в виде суперпозиции

$$\Phi = \Phi_a + \Phi_q$$

Фоновое излучение атмосферы Φ_a определяется как решение первой краевой задачи теории переноса (ПКЗ) с "вакуумными" граничными условиями

$$\hat{K}\Phi_a = F^{in}, \quad \Phi_a \mid_t = F^0, \quad \Phi_a \mid_b = F^h.$$
(3)

Задача для подсветки Φ_q , обусловленной влиянием отражающей подстилающей поверхности, — это общая краевая задача

$$\hat{K}\Phi_q = 0, \quad \Phi_q \mid_t = 0, \quad \Phi_q \mid_b = \varepsilon \hat{R}\Phi_q + \varepsilon E, \tag{4}$$

где источник $E(r_{\perp}, s) \equiv \hat{R} \Phi_a$ — яркость (освещенность, облученность) подложки, создаваемая фоновым излучени-ем.

Title Page Contents Page 14 of 64 Go Back Full Screen Close Quit

Home Page

This is Slide No. 15.

БАЗОВЫЕ МОДЕЛИ ФУНКЦИЙ ВЛИЯНИЯ КРАЕВОЙ ЗАДАЧИ ТЕОРИИ ПЕРЕНОСА

Первая краевая задача

$$\hat{K}\Phi = 0, \quad \Phi|_t = 0, \quad \Phi|_b = f(s^h; r_\perp, s)$$
 (5)

отвечает линейной системе переноса излучения и ее обобщенное решение представляется в виде линейного функционала — интеграла суперпозиции

$$\Phi(s^h;z,r_{\perp},s) \ = \ \hat{P}(f) \ \equiv \ (\Theta,f) \ \equiv \$$

$$\equiv \frac{1}{2\pi} \int_{\Omega^{-}} ds_{h}^{-} \int_{-\infty}^{\infty} \Theta(s_{h}^{-}; z, r_{\perp} - r_{\perp}', s) f(s^{h}; r_{\perp}', s_{h}^{-}) dr_{\perp}'.$$
(6)

Home Page

Title Page

Contents

Page 15 of 64

Go Back

Full Screen

Close

Quit

This is Slide No. 16.

Ядром функционала (6) является функция влияния $\Theta(s_h^-; z, r_\perp, s)$ — решение первой краевой задачи

$$\hat{K}\Theta = 0, \quad \Theta|_t = 0, \quad \Theta|_b = f_\delta(s_h^-; r_\perp, s) \tag{7}$$

с параметром $s_h^- \in \Omega^-$ и источником

$$f_{\delta}(s_h^-;r_{\perp},s) \ = \ \delta(r_{\perp})\delta(s-s_h^-) \ .$$

Функция влияния Θ фактически описывает поле излучения в слое с неотражающими границами, создаваемое за счет процессов многократного рассеяния стационарного узкого пучка с направлением s_h^- , источник которого расположен на границе z = h в центре системы горизонтальных координат x, y.

This is Slide No. 17.

Если источник $f(r_{\perp})$ — изотропный по углам и горизонтально-неоднородный по пространственным координатам, то решение ПКЗ (5) находится через линейный функционал — интеграл суперпозиции, который является интегралом свертки:

$$\Phi(z, r_{\perp}, s) = \hat{P}_{r}(f) \equiv (\Theta_{r}, f) \equiv \int_{-\infty}^{\infty} \Theta_{r}(z, r_{\perp} - r'_{\perp}, s) f(r'_{\perp}) dr'_{\perp}$$
(8)

с ядром — функцией влияния

$$\Theta_r(z, r_\perp, s) = \frac{1}{2\pi} \int_{\Omega^-} \Theta(s_h^-; z, r_\perp, s) \, ds_h^-, \tag{9}$$

которая совпадает с широко распространенной функцией размытия точки (ФРТ) и удовлетворяет первой краевой задаче

$$\hat{K}\Theta_r = 0, \quad \Theta_r|_t = 0, \quad \Theta_r|_b = \delta(r_\perp).$$
(10)

This is Slide No. 18.

В случае анизотропного по углам и горизонтальнооднородного по пространству источника $f(s^h; s)$ решение ПКЗ (5) определяется через линейный функционал *интеграл суперпозиции* по углам

$$\Phi(s^{h}; z, s) = \hat{P}_{z}(f) \equiv (\Theta_{z}, f) \equiv \frac{1}{2\pi} \int_{\Omega^{-}} \Theta_{z}(s_{h}^{-}; z, s) f(s^{h}; s_{h}^{-}) \, ds_{h}^{-}.$$
(11)

Ядро функционала — функция влияния

$$\Theta_z(s_h^-; z, s) = \int_{-\infty}^{\infty} \Theta(s_h^-; z, r_\perp, s) \, dr_\perp \tag{12}$$

является решением одномерной ПКЗ

$$\hat{K}_z \Theta_z = 0, \quad \Theta_z |_t = 0, \quad \Theta_z |_b = \delta(s - s_h^-)$$
 (13)

и описывает поле излучения, сформированное в слое, на границу z = h которого **извне падает параллельный ши-**рокий поток в направлении $s_h^- \in \Omega^-$. ПКЗ (13) аналогична обычной задаче для одномерного плоского слоя, освещае-мого мононаправленным потоком.

Home Page

Title Page

Contents

Page 18 of 64

Go Back

Full Screen

Close

Quit

This is Slide No. 19.

При изотропном и горизонтально-однородном источнике решение ПКЗ (5)

$$\Phi(z,s) = \hat{P}_c(f) = fW(z,s), \quad f = const,$$
 (14)

рассчитывается через функцию влияния

$$W(z,s) \ = \ \frac{1}{2\pi} \int_{\Omega^-} ds_h^- \int_{-\infty}^{\infty} \Theta(s_h^-;z,r_\perp,s) \, dr_\perp \ =$$

$$= \int_{-\infty}^{\infty} \Theta_r(z, r_{\perp}, s) \, dr_{\perp} = \frac{1}{2\pi} \int_{\Omega^-} \Theta_z(s_h^-; z, s) \, ds_h^-, \ (15)$$

которую называют также функцией пропускания, отягощенной вкладом многократного рассеяния, и определяют как решение одномерной ПКЗ с изотропным источником

$$\hat{K}_z W = 0, \quad W|_t = 0, \quad W|_b = 1.$$
 (16)

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

This is Slide No. 20.

Функции влияния Θ , Θ_r , Θ_z , W составляют полный набор базовых моделей фундаментальных решений первых и общих краевых задач теории переноса излучения в плоском слое и объективных инвариантных характеристик линейной САП.

Соотношения (15) можно использовать в качестве критериев оценки точности расчетов функций влияния.

This is Slide No. 21.

БАЗОВЫЕ МОДЕЛИ ПРОСТРАНСТВЕННО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК

С помощью фурье-преобразования (5) по горизонтальной координате r_{\perp} :

$$g(p) = \mathcal{F}[f(r_{\perp})] \equiv \int_{-\infty}^{\infty} f(r_{\perp}) \exp[i(p, r_{\perp})] dr_{\perp}, \quad B \equiv \mathcal{F}[\Phi],$$
(17)

где пространственная частота $p = (p_x, p_y)$ принимает только действительные значения $(-\infty < p_x, p_y < \infty)$, приходим к краевой задаче для параметрического одно-мерного комплексного уравнения переноса :

$$\hat{L}(p)B = 0, \quad B|_t = 0, \quad B|_b = g(s^h; p, s)$$
 (18)

с линейным оператором

$$\hat{L}(p) \equiv \hat{D}_z - i(p, s_\perp) - \hat{S}.$$

Home Page
Title Page
Contents
•• ••
• •
Page 21 of 64
Go Back
Full Screen
Close
Quit

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qu

This is Slide No. 22.

Решение комплексной первой краевой задачи (18) представляется как линейный функционал

$$B(s^{h}; z, p, s) = \hat{\Pi}(g) \equiv (\Psi, g) \equiv \frac{1}{2\pi} \int_{\Omega^{-}} \Psi(s_{h}^{-}; z, p, s) g(s^{h}; p, s_{h}^{-}) \, ds_{h}^{\checkmark} \xrightarrow{} (19) \qquad (19)$$

Ядром (19) является пространственно-частотная характеристика

$$\Psi(s_h^-; z, p, s) = \mathcal{F}[\Theta(s_h^-; z, r_\perp, s)]$$

с параметрами $s_h^- \in \Omega^-$ и p — решение задачи

$$\hat{L}(p)\Psi = 0, \quad \Psi|_{t} = 0, \quad \Psi|_{b} = g_{\delta}(s_{h}^{-}; p, s), \quad (20)$$
$$g_{\delta}(s_{h}^{-}; p, s) \equiv \mathcal{F}[f_{\delta}(s_{h}^{-}; r_{\perp}, s)] = \delta(s - s_{h}^{-}).$$

Home Page

Title Page

Contents

Page 22 of 64

Go Back

Full Screen

Close

Quit

This is Slide No. 23.

Кроме модели ПЧХ Ψ (20) для случая горизонтальнонеоднородного и анизотропного источника в ПКЗ (5), в набор базовых моделей входит ПЧХ

$$\Psi_r(z,p,s) \equiv \mathcal{F}[\Theta_r(z,r_\perp,s)] = \frac{1}{2\pi} \int_{\Omega^-} \Psi(s_h^-;z,p,s) \, ds_h^-,$$

которая удовлетворяет КПКЗ

$$\hat{L}(p)\Psi_r = 0, \quad \Psi_r|_t = 0, \quad \Psi_r|_b = 1,$$
(21)

когда источник в ПКЗ (5) изотропный и горизонтальнонеоднородный и

$$g_r(p) = g(p) = \mathcal{F}[f(r_\perp)].$$

Решение задачи (18) в этом случае определяется через классическое линейное соотношение

$$B_r(z, p, s) = \mathcal{F}[\Phi(z, r_\perp, s)] = \hat{\Pi}_r(g_r) \equiv (\Psi_r, g_r) \equiv \Psi_r(z, p, s)g_r(p).$$

Home Page
Title Page
Contents
44 >>
• •
Page 23 of 64
Go Back
Full Screen
Close

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

This is Slide No. 24.

ПЕРЕДАТОЧНЫЙ ОПЕРАТОР

На основе общей теории регулярных возмущений с помощью параметрического ряда

$$\Phi_q(s^h; z, r_\perp, s) = \sum_{k=1}^{\infty} \varepsilon^k \Phi_k$$

общая краевая задача (4) сводится к системе рекуррентных первых краевых задач типа (5)

$$\hat{K}\Phi_k = 0, \quad \Phi_k|_t = 0, \quad \Phi_k|_b = E_k$$
 (22)

с источниками $E_k = \hat{R} \Phi_{k-1}$ для $k \geq 2$, $E_1 = E$.

This is Slide No. 25.

Вводится операция, описывающая взаимодействие излучения с границей через функцию влияния Θ :

$$[\hat{G}f](s^h;h,r_{\perp},s) \equiv \hat{R}(\Theta,f) = \int_{\Omega^+} q(r_{\perp},s,s^+)(\Theta,f) \, ds^+ =$$

$$= \frac{1}{2\pi} \int_{\Omega^{-}} ds^{-\prime} \int_{-\infty}^{\infty} f(s^{h}; r'_{\perp}, s^{-\prime}) dr'_{\perp} \times$$

$$\times \int_{\Omega^+} q(r_{\perp}, s, s^+) \Theta(s^{-\prime}; h, r_{\perp} - r'_{\perp}, s^+) ds^+.$$

Решения системы ПКЗ (22) находятся как линейные функционалы:

$$\Phi_1(z,r_\perp,s) ~=~ (\Theta,E)_{
m s}$$

$$\Phi_k(z, r_{\perp}, s) = (\Theta, \hat{R} \Phi_{k-1}) = (\Theta, \hat{G}^{k-1} E).$$

This is Slide No. 26.

Асимптотически точное решение ОКЗ (4) получается в форме линейного функционала (6) — (оптического) ператочного оператора

$$\Phi_q = (\Theta, Y), \tag{23}$$

где "сценарий" (оптического) изображения или яркость подстилающей поверхности

$$Y \equiv \sum_{k=0}^{\infty} \hat{G}^{k} E = \sum_{k=0}^{\infty} \hat{R} \Phi_{k}, \ \hat{R} \Phi_{0} = E,$$
(24)

есть сумма ряда Неймана по кратности отражения излучения от подложки с учетом многократного рассеяния в среде через функцию влияния.

This is Slide No. 27.

В терминах фурье-образов (17) компоненты ряда возмущений

$$B_q(s^h; z, p, s) \equiv \mathcal{F}[\Phi_q(s^h; z, r_\perp, s)] = \sum_{k=1}^{\infty} \varepsilon^k B_k, \ B_k \equiv \mathcal{F}[\Phi_k],$$
(25)

удовлетворяют системе рекуррентных КПКЗ типа (18) $(V \equiv \mathcal{F}[E])$:

$$k = 1$$
: $\hat{L}(p)B_1 = 0$, $B_1|_t = 0$, $B_1|_b = V(p,s)$;

 $k \ge 2$: $\hat{L}(p)B_k = 0$, $B_k|_t = 0$, $B_k|_b = \left[\hat{T}B_{k-1}\right](h, p, s)$.

This is Slide No. 28.

^

Операция взаимодействия излучения с границей вводится через ПЧХ:

$$\begin{split} [\hat{Q}g](s^{h};h,p,s) \; &\equiv \; \mathcal{F}[\hat{G}f] \; = \; \hat{T}(\Psi,g) \; = \\ &= \; \frac{1}{(2\pi)^{2}} \, \int_{-\infty}^{\infty} \, dp' \, \int_{\Omega^{+}} \, v(p-p',s,s^{+})(\Psi,g) \, ds^{+} \; = \end{split}$$

$$= \frac{1}{2\pi} \int_{\Omega^{-}} ds^{-\prime} \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} g(s^h; p', s^{-\prime}) dp' \times$$

$$\times \int_{\Omega^+} v(p-p',s,s^+) \Psi(s^{-\prime};h,p',s^+) ds^+.$$

This is Slide No. 29.

Члены ряда (25) находятся как линейные функционалы (19):

$$B_1 = (\Psi, V), \quad B_k = (\Psi, \hat{T}B_{k-1}) = (\Psi, \hat{Q}^{k-1}V).$$

Сумма ряда (25) — фурье-образ асимптотически точного решения ОКЗ (4) есть линейный функционал (19)

$$B_q = (\Psi, Z); \quad \Phi_q = \mathcal{F}^{-1}[B_q] = \mathcal{F}^{-1}[(\Psi, Z)].$$
 (26)

Фурье-образ "сценария" суть сумма ряда Неймана по кратности отражения излучения от подстилающей поверхности (в терминах фурье-образов):

$$\mathcal{F}[Y] = Z \equiv \sum_{k=0}^{\infty} \hat{Q}^k V = \sum_{k=0}^{\infty} \hat{T} B_k.$$

Home Page Title Page Contents Page 29 of 64 Go Back Full Screen Close Quit

27)

This is Slide No. 30.

В итоге исходная общая краевая задача (4) сведена к линейному функционалу и сформулирован линейносистемный подход к решению проблем дистанционного зондирования земной поверхности.

При этом **нелинейные эффекты** из-за многократного переотражения излучения от поверхности в формировании "сценария" описываются **через универсальные линейные передаточные характеристики**, учитывающие многократное рассеяние и поглощение в среде.

Линейных функционал (23) — это математическая модель переноса излучения в системе, адекватная исходной общей краевой задаче (4) при разных структурах источника и типах подстилающей поверхности не зависимо от размерности задачи (одно-, дву- или трехмерной).

This is Slide No. 31.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПЕРЕНОСА ПОЛЯРИЗОВАННОГО ИЗЛУЧЕНИЯ

В SP-представлении (Стокса-Пуанкаре) компоненты вектора-столбца $\Phi = (I, Q, U, V)^{T}$ имеют нормировку интенсивности:

$$Q = Ip\cos 2\chi\cos 2\beta, \ U = Ip\sin 2\chi\cos 2\beta, \ V = Ip\sin 2\beta$$

 χ — азимут плоскости поляризации, β — степень эллиптичности, $0 \leq p \leq 1$ — степень поляризации.

This is Slide No. 32.

Вектор Стокса находим как решение общей векторной краевой задачи теории переноса ($\hat{R} \not\equiv 0)$

$$\hat{K}\mathbf{\Phi} = \mathbf{F}, \ \mathbf{\Phi}|_{t} = \mathbf{F}^{0}, \ \mathbf{\Phi}|_{b} = \varepsilon \hat{R}\mathbf{\Phi} + \mathbf{F}^{H}$$
 (28)

с линейными операторами: оператор переноса

$$\hat{D} \equiv (s, grad) + \sigma(z) = \hat{D}_z + \left(s_{\perp}, \frac{\partial}{\partial r_{\perp}}\right), \quad \hat{D}_z \equiv \mu \frac{\partial}{\partial z} + \sigma(z);$$

интеграл столкновений (функция источника)

$$\hat{S}oldsymbol{\Phi} \ \equiv \ \sigma_s(z) \ \int_\Omega \ \hat{P}(z,s,s') oldsymbol{\Phi}(z,r_\perp,s') \, ds', \ \ ds' = \ d\mu' \, darphi';$$

равномерно ограниченный оператор отражения

$$[\hat{R}\Phi](H,r_{\perp},s) \equiv \int_{\Omega^{+}} \hat{q}(r_{\perp},s,s^{+})\Phi(H,r_{\perp},s^{+})\,ds^{+}\,;\,\,(29)$$

интегро-дифференциальный оператор $\hat{K} \equiv \hat{D} - \hat{S}$.

Home Page Title Page Contents Page 32 of 64 Go Back Full Screen Close Quit

This is Slide No. 33.

Краевая задача (28)—(29) линейная и ее решение можно искать в виде суперпозиции

$$\mathbf{\Phi} = \mathbf{\Phi}_0 + \mathbf{\Phi}_R$$

Фоновое излучение Φ_0 определяется как решение первой векторной краевой задачи теории переноса с "вакуумными" условиями для слоя с прозрачными или абсолютно черными (неотражающими) границами ($\hat{R} \equiv 0$):

$$\hat{K}\mathbf{\Phi}_0 = \mathbf{F}, \ \mathbf{\Phi}_0|_t = \mathbf{F}^0, \ \mathbf{\Phi}_0|_b = \mathbf{F}^H.$$
 (30)

Задача для подсветки Φ_R , обусловленной влиянием отражающей подстилающей поверхности, — общая векторная краевая задача ($\hat{R} \not\equiv 0$, $\mathbf{E} \not\equiv 0$)

$$\hat{K}\mathbf{\Phi}_{R} = 0, \ \mathbf{\Phi}_{R}|_{t} = 0, \ \mathbf{\Phi}_{R}|_{b} = \varepsilon \hat{R}\mathbf{\Phi}_{R} + \varepsilon \mathbf{E},$$
 (31)

где источник $\mathbf{E}(r_{\perp}, s) \equiv \hat{R} \Phi_0$ — яркость (освещенность, облученность) подложки, создаваемая фоновым излучением, с учетом состояния поляризации.

Home Page

Title Page

Contents

Page 33 of 64

Go Back

Full Screen

Close

Quit

ФУНКЦИИ ВЛИЯНИЯ ВЕКТОРНОЙ КРАЕВОЙ ЗАДАЧИ ТЕОРИИ ПЕРЕНОСА

Рассмотрим векторную первую краевую задачу теории переноса

$$\hat{K}\boldsymbol{\Phi} = 0, \quad \boldsymbol{\Phi}|_{t} = 0, \quad \boldsymbol{\Phi}|_{b} = \mathbf{f}(s^{H}; r_{\perp}, s).$$
(32)

Различные возможные состояния поляризации плоской поперечно-электрической волны в общем случае представляются вектором $\Phi(s^{H}; z, r_{\perp}, s)$, составленным из четырех действительных величин $\Phi_{m}, m = 1, ..., M, M = 4$, которые являются коэффициентами разложения вектора Φ по ортам \mathbf{i}_{m} некоторой системы координат:

 $\mathbf{\Phi} = \mathbf{i}_1 \Phi_1 + \mathbf{i}_2 \Phi_2 + \mathbf{i}_3 \Phi_3 + \mathbf{i}_4 \Phi_4,$

которая зависит от способа описания поляризованного излучения.

This is Slide No. 35.

В общем случае, когда вектор Стокса источника **f** содержит несовпадающие анизотропные горизонтальнонеоднородные компоненты $f_n(s^H; r_{\perp}, s)$, **решение** векторной задачи (32) можно представить **в виде суммы**

$$\mathbf{\Phi}(r,s) \;=\; \sum_{n=1}^{N} \; \mathbf{\Phi}_{n}(r,s),$$

слагаемые которой являются **решением набора вектор**ных задач

$$\hat{K}\boldsymbol{\Phi}_{n} = 0, \quad \boldsymbol{\Phi}_{n}|_{t} = 0, \quad \boldsymbol{\Phi}_{n}|_{b} = \mathbf{t}_{n}f_{n}$$
(33)

с векторами

$$\mathbf{t}_n = \{\delta_{mn}\}, \ m = 1, \dots, M, \ n = 1, \dots, N,$$

где δ_{mn} — символ Кронекера.

This is Slide No. 36.

По аналогии со скалярной задачей теории переноса, **решение векторной задачи** (33) для фиксированного *n* получается **в виде векторного линейного функционала:**

$$oldsymbol{\Phi}_n \;=\; (oldsymbol{\Theta}_n, f_n) \;=\;$$

$$= \frac{1}{2\pi} \int_{\Omega^{-}} ds^{-} \int_{-\infty}^{\infty} \Theta_{n}(s^{-}; z, r_{\perp} - r'_{\perp}, s) f_{n}(s^{\scriptscriptstyle H}; r'_{\perp}, s^{-}) dr'_{\perp}.$$

Векторные функции влияния $\Theta_n = \{\Theta_{mn}\}, n = 1, \ldots, N$, компонентами которых являются параметры Стокса $\Theta_{mn}(s^-; z, r_\perp, s), m = 1, \ldots, M$, находятся как решение набора векторных задач

$$\hat{K}\boldsymbol{\Theta}_{n} = 0, \quad \boldsymbol{\Theta}_{n}|_{t} = 0, \quad \boldsymbol{\Theta}_{n}|_{b} = \mathbf{t}_{n}f_{\delta},$$
$$f_{\delta}(s^{-};r_{\perp},s) = \delta(r_{\perp})\delta(s-s^{-}),$$

с параметром $s^- \in \Omega^-$.

This is Slide No. 38.

Вводим тензор функций влияния, определенный N векторами Стокса Θ_n :

$$\hat{\Pi} = \begin{bmatrix} \Theta_{11} & \dots & \Theta_{1n} & \dots & \Theta_{1N} \\ \dots & \dots & \dots & \dots & \dots \\ \Theta_{m1} & \dots & \Theta_{mn} & \dots & \Theta_{mN} \\ \dots & \dots & \dots & \dots & \dots \\ \Theta_{M1} & \dots & \Theta_{Mn} & \dots & \Theta_{MN} \end{bmatrix}.$$

Первый индекс $m = 1, ..., M, M \leq 4$, компоненты Θ_{mn} тензора $\hat{\Pi}$ отвечает порядковому номеру параметра Стокса Θ_n , а второй индекс $n = 1, ..., N, N \leq 4$, соответствует индексу вектора источника \mathbf{t}_n в наборе задач (33), описывающем модель расчета Θ_n , а, следовательно, компонент тензора $\hat{\Pi}$ (35).

Home Page Title Page Contents Page 38 of 64 Go Back Full Screen Close Quit

(35)

This is Slide No. 39.

Вводим линейный векторный функционал

$$\boldsymbol{\Phi} = \hat{\mathcal{P}}(\mathbf{f}) \equiv (\hat{\Pi}, \mathbf{f}) = \{\Phi_m\}, \quad m = 1, \dots, M, \quad M \le 4.$$
(36)

Компоненты решения задачи (32), определяемые через скалярное произведение

$$\Phi_m = [\hat{\mathcal{P}}(\mathbf{f})]_m \equiv \sum_{n=1}^N (\Theta_{mn}, f_n),$$

являются линейной комбинацией линейных скалярных функционалов (34).

This is Slide No. 40.

ВЕКТОРНЫЙ ОПТИЧЕСКИЙ ПЕРЕДАТОЧНЫЙ ОПЕРАТОР

Вводим параметрический ряд регулярных возмущений

$$oldsymbol{\Phi}_{\scriptscriptstyle R} \ = \ \sum_{k=1}^\infty \ arepsilon^k oldsymbol{\Phi}_k$$

члены которого удовлетворяют системе рекуррентных первых векторных краевых задач

$$k = 1: \hat{K} \Phi_{1} = 0, \quad \Phi_{1}|_{t} = 0, \quad \Phi_{1}|_{b} = \mathbf{E};$$
(37)
$$k \ge 2: \hat{K} \Phi_{k} = 0, \quad \Phi_{k}|_{t} = 0, \quad \Phi_{k}|_{b} = \hat{R} \Phi_{k-1}.$$
(38)

Home	e Page
	_
Title	Page
Con	tents
••	>>
•	•
Page 1	0 of 64
	0 01 04
Go I	Back
Full S	Screen
Cle	ose
Q	uit

This is Slide No. 41.

Вводим операцию, описывающую взаимодействие излучения с границей через тензор функций влияния (35):

$$[\hat{G}\mathbf{f}](s^{-};H,r_{\perp},s) \ \equiv \ \hat{R}(\hat{\Pi},\mathbf{f}) \ = \ \int_{\Omega^{+}} \ \hat{q}(r_{\perp},s,s^{+})(\hat{\Pi},\mathbf{f}) \ ds^{+}.$$

Решения задач (37)-(38) представимы через тензор (35) в рекуррентной форме:

$$\boldsymbol{\Phi}_1 = (\hat{\Pi}, \mathbf{E}); \quad \boldsymbol{\Phi}_k = (\hat{\Pi}, \hat{R} \boldsymbol{\Phi}_{k-1}) = (\hat{\Pi}, \hat{G}^{k-1} \mathbf{E})$$

и асимптотически точное решение задачи (31) выражается явно (полагаем $\varepsilon = 1$):

$$\mathbf{\Phi}_{R} = (\hat{\Pi}, \mathbf{Y}); \quad \mathbf{Y} \equiv \hat{Y}\mathbf{E} \equiv \sum_{k=0}^{\infty} \hat{G}^{k}\mathbf{E} = \sum_{k=0}^{\infty} \hat{R}\mathbf{\Phi}_{k} \quad (39)$$

 сумма ряда Неймана по кратности отражения излучения от подложки — "сценарий" оптического изображения или яркость подстилающей поверхности. Home Page

Title Page

Contents

Page 41 of 64

Go Back

Full Screen

Close

Quit

This is Slide No. 42.

В соответствии с новой математической моделью (39), вместо расчета ряда по кратности отражения в полном фазовом объеме решения задачи (31), достаточно рассчитать конечный ряд Неймана только для "сценария" на границе с z = H в фазовом объеме X^- , а затем искать угловые и пространственные распределения параметров Стокса решения задачи (31) с помощью функционала (39).

This is Slide No. 43.

ВЕКТОРНЫЕ ПРОСТРАНСТВЕННО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ

С помощью фурье-преобразования по координате r_{\perp} исходная векторная краевая задача (32) приводится к краевой задаче для параметрического одномерного векторного комплексного уравнения переноса:

$$\hat{L}(p)\mathbf{B} = 0, \ \mathbf{B}|_{t} = 0, \ \mathbf{B}|_{b} = \mathbf{g}(s^{H}; p, s)$$
 (40)

с линейным оператором

$$\hat{L}(p) \equiv \hat{D}_z - i(p, s_\perp) - \hat{S}; \ \ (p, s_\perp) = p_x \sin \vartheta \cos \varphi + p_y \sin \vartheta \sin \varphi.$$

This is Slide No. 44.

Решение задачи (40) представляется в виде суперпозиции

$$\mathbf{B}(z,p,s) = \sum_{n=1}^{N} \mathbf{B}_{n}(z,p,s),$$

компоненты которой являются решением набора задач

$$\hat{L}(p)\mathbf{B}_n = 0, \quad \mathbf{B}_n|_t = 0, \quad \mathbf{B}_n|_b = \mathbf{t}_n g_n, \quad (41)$$

получающегося в результате фурье-преобразования набора задач (33);

$$g_n(s^{\scriptscriptstyle H};p,s) \equiv \mathcal{F}[f_n(s^{\scriptscriptstyle H};r_{\perp},s)].$$

This is Slide No. 45.

Решение задачи (41) для фиксированного n = 1, ..., N находится в форме векторного линейного функционала

$$\mathbf{B}_{n}(z,p,s) = (\mathbf{\Psi}_{n},g_{n}) = \frac{1}{2\pi} \int_{\Omega^{-}} \mathbf{\Psi}_{n}(s^{-};z,p,s) \, g_{n}(s^{\scriptscriptstyle H};p,s^{-}) \, ds^{-},$$

ядром которого является векторная пространственночастотная характеристика $\Psi_n = \{\Psi_{mn}(s^-; z, p, s)\}, n = 1, ..., N, N \leq 4$, с параметрами $s^- \in \Omega^-$ и p — решение векторной задачи для комплексного уравнения переноса

$$\hat{L}(p)\Psi_n = 0, \quad \Psi_n|_t = 0, \quad \Psi_n|_b = \mathbf{t}_n g_\delta,$$
(42)

где

$$g_{\delta}(s^{-};p,s) \equiv \mathcal{F}[f_{\delta}(s^{-};r_{\perp},s)] = \delta(s-s^{-}).$$

Home Page
Title Page
Contents
4 4
▲ ►
Page 45 of 64
Go Back
Full Screen
Close
Quit

This is Slide No. 46.

Компоненты фурье-образа вектора Стокса $\mathbf{B}_n = \{B_{mn}\}$ вычисляются с помощью линейного функционала аналогично скалярной задаче:

$$B_{mn}(z,p,s) = [\hat{\mathcal{T}}(\mathbf{g})]_{mn} \equiv (\Psi_{mn},g_n) =$$

$$= \frac{1}{2\pi} \int_{\Omega^{-}} \Psi_{mn}(s^{-}; z, p, s) g_{n}(s^{H}; p, s^{-}) ds^{-}.$$
(43)

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

This is Slide No. 47. Если ввести тензор, определенный N векторами Ψ_n :

$$\hat{\Gamma} = \begin{bmatrix} \Psi_{11} & \dots & \Psi_{1n} & \dots & \Psi_{1N} \\ \dots & \dots & \dots & \dots & \dots \\ \Psi_{m1} & \dots & \Psi_{mn} & \dots & \Psi_{mN} \\ \dots & \dots & \dots & \dots & \dots \\ \Psi_{M1} & \dots & \Psi_{Mn} & \dots & \Psi_{MN} \end{bmatrix},$$

решение задачи (40) можно представить в виде **линейного векторного функционала**:

$$\mathbf{B} = \hat{\mathcal{T}}(\mathbf{g}) \equiv (\hat{\Gamma}, \mathbf{g}) = \{B_m\}, \quad m = 1, \dots, M, \quad M \le 4,$$
(45)

где фурье-образы параметров Стокса, определяемые через скалярное произведение

$$B_m = [\hat{\mathcal{T}}(\mathbf{g})]_m \equiv \sum_{n=1}^N (\Psi_{mn}, g_n),$$

являются линейными комбинациями линейных скалярных функционалов (43). Home Page

(44)

This is Slide No. 48.

ФУРЬЕ-ПРЕДСТАВЛЕНИЕ ВЕКТОРНОГО ОПТИЧЕСКОГО ПЕРЕДАТОЧНОГО ОПЕРАТОРА

В терминах фурье-образов компоненты ряда

$$\mathbf{B}_{R}(z,p,s) \equiv \mathcal{F}[\mathbf{\Phi}_{R}(z,r_{\perp},s)] = \sum_{k=1}^{\infty} \varepsilon^{k} \mathbf{B}_{k}(z,p,s)$$
(46)

— решения системы рекуррентных комплексных задач $(\mathbf{B}_k \equiv \mathcal{F}[\mathbf{\Phi}_k])$:

$$k = 1: \hat{L}(p)\mathbf{B}_{1} = 0, \quad \mathbf{B}_{1}|_{t} = 0, \quad \mathbf{B}_{1}|_{b} = \mathbf{W};$$

$$(47)$$

$$k \ge 2: \hat{L}(p)\mathbf{B}_{k} = 0, \quad \mathbf{B}_{k}|_{t} = 0, \quad \mathbf{B}_{k}|_{b} = \hat{T}\mathbf{B}_{k-1}.$$

$$(48)$$

This is Slide No. 49.

Введем операцию, описывающую взаимодействие излучения с границей через тензор ПЧХ (44):

$$[\hat{Q}\mathbf{g}](s^{-};H,p,s) \equiv \mathcal{F}[\hat{G}\mathbf{f}] = \hat{T}(\hat{\Gamma},\mathbf{g}) =$$

$$= \ \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \ dp' \int_{\Omega^+} \ \hat{v}(p-p',s,s^+) \left(\hat{\Gamma},{\bf g}\right) ds^+ \ ,$$

и получим решение задач (47)–(48) в форме векторных функционалов с рекуррентными соотношениями:

$$\mathbf{B}_1 = (\hat{\Gamma}, \mathbf{W}); \quad \mathbf{B}_k = (\hat{\Gamma}, \hat{T}\mathbf{B}_{k-1}) = (\hat{\Gamma}, \hat{Q}^{k-1}\mathbf{W}).$$

This is Slide No. 50.

Сумма ряда (46) — фурье-образ асимптотически точного решения задачи (31) в классе функций медленного роста \mathcal{S}' - определяется через линейный векторный функционал

$$\mathbf{B}_{R} = (\hat{\Gamma}, \mathbf{Z}), \tag{49}$$

ядром которого является тензор ПЧХ, а фурье-образ "сценария"

$$\mathbf{Z} \equiv \hat{Z}\mathbf{W} \equiv \sum_{k=0}^{\infty} \hat{Q}^{k}\mathbf{W} = \sum_{k=0}^{\infty} \hat{T}\mathbf{B}_{k}$$
(50)

— сумма ряда Неймана по кратности отражения излучения от подложки (в терминах фурье-образов). Home Page

Title Page

Contents

Page 50 of 64

Go Back

Full Screen

Close

Quit

ГЕТЕРОГЕННЫЕ СИСТЕМЫ

Впервые разработаны оригинальный универсальный математический аппарат и параллельные алгоритмы для моделирования переноса оптического излучения с учетом многократного рассеяния, поглощения и поляризации в многослойных неоднородных гетерогенных природных и искусственных системах с существенно различными радиационными режимами в отдельных областях системы. Этот подход относится к методам domain decomposition.

Гетерогенной, например, является система "свободная атмосфера – многоярусная слоистая облачность – приземный слой атмосферы – океан" или система "мезосфера – стратосфера – тропосферные многоярусные слоистые облака – шлейфы дымов или выбросов загрязнений – земная поверхность".

This is Slide No. 52.

Подход основан на построении обобщенных решений в форме векторных функционалов, ядрами которых являются векторы или тензоры функций влияния отдельных слоев системы, которые можно рассчитывать разными методами в разных приближениях теории переноса излучения на разных сетках.

Сопряжение решения осуществляется через операторы отражения и пропускания на границах слоев.

Рассмотрим систему, состоящую из М слоев.

This is Slide No. 54.

ВЕКТОРНАЯ КРАЕВАЯ ЗАДАЧА ДЛЯ ГЕТЕРОГЕН-НОЙ СИСТЕМЫ ПЕРЕНОСА ИЗЛУЧЕНИЯ

$$\hat{K}\mathbf{\Phi} = \mathbf{F}^{in}, \ \mathbf{\Phi} \mid_{t\downarrow} = \mathbf{F}_t^{\downarrow}, \ \mathbf{\Phi} \mid_{b\uparrow} = \hat{R}_b^{\uparrow}\mathbf{\Phi} + \mathbf{F}_b^{\uparrow},$$

краевые условия на границах слоев для $m = 2 \div M$:

$$\mathbf{\Phi} \mid_{d\uparrow,m} = \varepsilon \left(\hat{R}_m^{\uparrow} \mathbf{\Phi} + \hat{T}_m^{\uparrow} \mathbf{\Phi} \right) + \mathbf{F}_{m-1}^{\uparrow} ,$$

$$\mathbf{\Phi}\mid_{d\downarrow,m} = \varepsilon \left(R_m^{\downarrow} \mathbf{\Phi} + T_m^{\downarrow} \mathbf{\Phi} \right) + \mathbf{F}_m^{\downarrow};$$

краевые условия на внешних границах системы:

$$\mathbf{F}_{1}^{\downarrow} = \mathbf{F}_{t}^{\downarrow}; \quad \mathbf{F}_{M}^{\uparrow} = \mathbf{F}_{b}^{\uparrow}; \quad d \downarrow, 1 = t \downarrow; \quad d \uparrow, M+1 = b \uparrow;$$

Home Page

Title Page

This is Slide No. 55.

Решение ищем в виде параметрического ряда регулярных возмущений, с помощью которого расщепляются краевые задачи для отдельных слоев:

$$oldsymbol{\Phi} \;=\; \sum_{n=0}^{\infty} arepsilon^n oldsymbol{\Phi}^{(n)}$$

Вводим алгебраические векторы с размерностью 2M: n -приближение решения

$$\mathbf{\Phi}^{(n)} = \{\mathbf{\Phi}_1^{\downarrow(n)}, \mathbf{\Phi}_1^{\uparrow(n)}, \mathbf{\Phi}_2^{\downarrow(n)}, \mathbf{\Phi}_2^{\uparrow(n)}, \dots, \mathbf{\Phi}_m^{\downarrow(n)}, \mathbf{\Phi}_m^{\uparrow(n)}, \dots, \mathbf{\Phi}_M^{\downarrow(n)}, \mathbf{\Phi}_M^{\uparrow(n)}\}$$

полное решение

$$oldsymbol{\Phi} \;=\; \{oldsymbol{\Phi}_1^{\downarrow},oldsymbol{\Phi}_1^{\uparrow},oldsymbol{\Phi}_2^{\downarrow},oldsymbol{\Phi}_2^{\uparrow},\ldots,oldsymbol{\Phi}_m^{\downarrow},oldsymbol{\Phi}_m^{\uparrow},\ldots,oldsymbol{\Phi}_M^{\downarrow},oldsymbol{\Phi}_M^{\uparrow}\}\,;$$

Home Page

Title Page

Contents

Page 55 of 64

Go Back

Full Screen

Close

Quit

This is Slide No. 56.

Contents источники в *n*-приближении функции влияния слоев $\boldsymbol{\Theta} = \{\boldsymbol{\Theta}_1^{\downarrow}, \boldsymbol{\Theta}_1^{\uparrow}, \boldsymbol{\Theta}_2^{\downarrow}, \boldsymbol{\Theta}_2^{\uparrow}, \dots, \boldsymbol{\Theta}_m^{\downarrow}, \boldsymbol{\Theta}_m^{\uparrow}, \dots, \boldsymbol{\Theta}_M^{\downarrow}, \boldsymbol{\Theta}_M^{\uparrow}\};$ Page 56 of 64 начальное приближение источников Go Back $\mathbf{E} = \{ \mathbf{E}_1^{\downarrow}, \mathbf{E}_1^{\uparrow}, \mathbf{E}_2^{\downarrow}, \mathbf{E}_2^{\uparrow}, \dots, \mathbf{E}_m^{\downarrow}, \mathbf{E}_m^{\uparrow}, \dots, \mathbf{E}_M^{\downarrow}, \mathbf{E}_M^{\uparrow} \} ;$ Full Screen "сценарий" на границах $\mathbf{Z} \ = \ \{\mathbf{Z}_1^{\downarrow}, \mathbf{Z}_1^{\uparrow}, \mathbf{Z}_2^{\downarrow}, \mathbf{Z}_2^{\uparrow}, \dots, \mathbf{Z}_m^{\downarrow}, \mathbf{Z}_m^{\uparrow}, \dots, \mathbf{Z}_M^{\downarrow}, \mathbf{Z}_M^{\uparrow}\} \ .$ Close

Home Page

Title Page

Quit

This is Slide No. 57.

ДЕКОМПОЗИЦИЯ ИСХОДНОЙ ЗАДАЧИ на 2*M* задач со своими краевыми условиями

Нулевое приближение разложения по параметру ε — излучение от источников без учета обмена излучением между слоями:

для $m = 1 \div M$

$$\hat{K} \boldsymbol{\Phi}_{m}^{\downarrow(0)} = \mathbf{F}_{m}^{\downarrow in}, \quad \boldsymbol{\Phi}_{m}^{\downarrow(0)} \mid_{d\downarrow,m} = \mathbf{F}_{m}^{\downarrow}, \quad \boldsymbol{\Phi}_{m}^{\downarrow(0)} \mid_{d\uparrow,m+1} = 0;$$
$$\hat{K} \boldsymbol{\Phi}_{m}^{\uparrow(0)} = \mathbf{F}_{m}^{\uparrow in}, \quad \boldsymbol{\Phi}_{m}^{\uparrow(0)} \mid_{d\downarrow,m} = 0, \quad \boldsymbol{\Phi}_{m}^{\uparrow(0)} \mid_{d\uparrow,m+1} = \mathbf{F}_{m}^{\uparrow}.$$

Home Page Title Page Contents
Title Page Contents
Contents
Contents
Contents
Contents
••
• •
Page 57 of 64
Go Back
Full Screen
Close
Quit

This is Slide No. 58.

Приближение разложения по параметру ε с номером $n \ge 1$ описывается системой из 2M краевых задач для отдельных слоев с номерами $m = 1 \div M$:

$$\hat{K} \boldsymbol{\Phi}_{m}^{\downarrow(n)} = 0, \quad \boldsymbol{\Phi}_{m}^{\downarrow(n)} \mid_{d\downarrow,m} = \mathbf{F}_{m}^{\downarrow(n-1)}, \quad \boldsymbol{\Phi}_{m}^{\downarrow(n)} \mid_{d\uparrow,m+1} = 0;$$
$$\hat{K} \boldsymbol{\Phi}_{m}^{\uparrow(n)} = 0, \quad \boldsymbol{\Phi}_{m}^{\uparrow(n)} \mid_{d\downarrow,m} = 0, \quad \boldsymbol{\Phi}_{m}^{\uparrow(n)} \mid_{d\uparrow,m+1} = \mathbf{F}_{m}^{\uparrow(n-1)}$$

с источниками

$$\mathbf{F}_{1}^{\downarrow(n)} = 0; \quad \mathbf{F}_{M}^{\uparrow(n)} = \hat{R}_{b}^{\uparrow} \mathbf{\Phi}_{M}^{\downarrow(n)} + \hat{R}_{b}^{\uparrow} \mathbf{\Phi}_{M}^{\uparrow(n)};$$

$$\mathbf{F}_{m}^{\downarrow(n)} = \hat{T}_{m}^{\downarrow} \mathbf{\Phi}_{m-1}^{\downarrow(n)} + \hat{T}_{m}^{\downarrow} \mathbf{\Phi}_{m-1}^{\uparrow(n)} + \hat{R}_{m}^{\downarrow} \mathbf{\Phi}_{m}^{\downarrow(n)} + \hat{R}_{m}^{\downarrow} \mathbf{\Phi}_{m}^{\uparrow(n)};$$

$$\mathbf{F}_m^{\uparrow(n)} \,=\, \hat{R}_{m+1}^{\uparrow} \mathbf{\Phi}_m^{\downarrow(n)} + \hat{R}_{m+1}^{\uparrow} \mathbf{\Phi}_m^{\uparrow(n)} + \hat{T}_{m+1}^{\uparrow} \mathbf{\Phi}_{m+1}^{\downarrow(n)} + \hat{T}_{m+1}^{\uparrow} \mathbf{\Phi}_{m+1}^{\uparrow(n)} \,.$$

Home Page
Title Page
Contents

• •
Page 58 of 64
Go Back
Full Screen
Close
Quit

This is Slide No. 59.

Решения для каждого из слоев с $m = 1 \div M$ находятся в виде векторных линейных функционалов:

$$\mathbf{\Phi}_m^{\downarrow(n)} = \left(\mathbf{\Theta}_m^{\downarrow}, \mathbf{F}_m^{\downarrow(n-1)}
ight) ; \quad \mathbf{\Phi}_m^{\uparrow(n)} = \left(\mathbf{\Theta}_m^{\uparrow}, \mathbf{F}_m^{\uparrow(n-1)}
ight) .$$

Компоненты векторного линейного функционала для слоя с $z \in [h_m, h_{m+1}]$:

$$\left({oldsymbol \Theta}_m^\downarrow, {f f}_m^\downarrow
ight) (z,s) \ = \ \int_{\Omega^+} {oldsymbol \Theta}_m^\downarrow (s_m^\downarrow; z,s) {f f}_m^\downarrow (h_m, s_m^\downarrow) ds_m^\downarrow \, ;$$

$$\left({oldsymbol \Theta}_m^{\uparrow}, {f f}_m^{\uparrow}
ight) (z,s) \ = \ \int_{\Omega^-} {oldsymbol \Theta}_m^{\uparrow}(s_m^{\uparrow};z,s) {f f}_m^{\uparrow}(h_{m+1},s_m^{\uparrow}) ds_m^{\uparrow} \ ;$$

 $\mathbf{f}_m^{\downarrow}(h_m, s_m^{\downarrow})$ — источник излучения на границе $z = h_m$ при $s_m^{\downarrow} \in \Omega^{\downarrow}$; $\mathbf{f}_m^{\uparrow}(h_m, s_m^{\uparrow})$ — источник излучения на границе $z = h_m$ при $s_m^{\uparrow} \in \Omega^{\uparrow}$.

Home Page Title Page Contents Page 59 of 64 Go Back Full Screen Close Quit

This is Slide No. 60.

Ядра функционалов — векторные функции влияния слоев $m = 1 \div M$ — определяются из векторных краевых задач

$$\hat{K} \Theta_m^{\downarrow} = 0, \quad \Theta_m^{\downarrow} \mid_{d\downarrow,m} = \mathbf{f}_{\delta,m}^{\downarrow}, \quad \Theta_m^{\downarrow} \mid_{d\uparrow,m+1} = 0;$$

 $\hat{K} \Theta_m^{\uparrow} = 0, \quad \Theta_m^{\uparrow} \mid_{d\downarrow,m} = 0, \quad \Theta_m^{\uparrow} \mid_{d\uparrow,m+1} = \mathbf{f}_{\delta,m}^{\uparrow},$
где

$$\begin{split} \mathbf{f}_{\delta,m}^{\downarrow} &= \mathbf{t}_{m}^{\downarrow} \,\delta(s - s_{m}^{\downarrow}) \,, \quad s_{m}^{\downarrow} \in \Omega^{\downarrow} \,; \\ \mathbf{f}_{\delta,m}^{\uparrow} &= \mathbf{t}_{m}^{\uparrow} \,\delta(s - s_{m}^{\uparrow}) \,, \quad s_{m}^{\uparrow} \in \Omega^{\uparrow}. \end{split}$$

This is Slide No. 61.

 P_{tr} — матрица ленточного типа с характеристиками отражения и пропускания границ.

Вводится матрично-векторная операция, описывающая один акт взаимодействия излучения на границах и учитывающая многократное рассеяние в слоях через функции влияния:

 $\Psi = \hat{G}\mathbf{F} = \hat{P}_{tr}(\Theta, \mathbf{F}).$

Два последовательных *n*-приближения связаны рекуррентным соотношением

$$\mathbf{\Phi}^{(n)} = \left(\mathbf{\Theta}, \hat{P}_{tr} \mathbf{\Phi}^{(n-1)}\right) = \left(\mathbf{\Theta}, \hat{G}^{n-1} \mathbf{E}\right)$$

This is Slide No. 62.

Асимптотически точное решение получается в форме векторного линейного функционала — (оптического) векторного передаточного оператора:

 $\Phi = (\Theta, \mathbf{Z})$.

"Сценарий" — вектор Z распределений яркостей на границах слоев

$$\mathbf{Z} \equiv \hat{Z}\mathbf{E} \equiv \sum_{n=0}^{\infty} \hat{G}^n \mathbf{E} = \mathbf{E} + \sum_{n=0}^{\infty} \hat{P}_{tr} \mathbf{\Phi}^{(n)} = \mathbf{E} + \sum_{n=0}^{\infty} \mathbf{F}^{(n)}$$

— сумма ряда Неймана по кратности прохождения излучения через границы с учетом вклада многократного рассеяния с помощью функций влияния каждого слоя.

Home Page Title Page Contents Page 62 of 64 Go Back Full Screen Close Quit

This is Slide No. 63.

Этапы реализации расчета:

1. Расчет векторных функций влияния с распараллеливанием по слоям и по параметрам для каждого слоя и запись в архивы решений на многопроцессорных компьютерах.

2. Итерационный расчет вектора "сценария" на границах слоев через матрично-векторную процедуру.

3. Расчет угловых и пространственных распределений излучения внутри системы и на ее границах с помощью линейных векторных функционалов, содержащих "сценарий" и ядром которых являются векторные функции влияния.

Quit