Отклик экваториальной нижней ионосферы на тропосферные катастрофы в годы различной солнечной активности

<u>Отдел «Исследование Земли из космоса»</u> Лаборатория «Климатические исследования»

Ванина-Дарт Л.Б., Шарков Е.А., Покровская И.В.

Экваториальная аномалия ионосферной области F2 (III 1958 г., 20 ч. LT)

Сравнение экваториальных профилей [e](h), полученных на пол. Тумба (Индия) и НИС «Ак. Королев» с моделью IRI и со среднеширотным летним распределением [e](h): 1 – ст. Тумба, низкая солнечная активность, F10,7(cp) = 78±9, R(cp) = 20, Ap(cp) = 15, χ = 71± 2⁰, N = 37; 2 – ст. Тумба, высокая солнечная активность, F10,7(cp) = 182±24, R(cp) = 129, Ap (cp) = 19, χ = 71±2⁰, N = 33; 43- НИС «Ак. Королев»; 4 –модель IRI ; 5- среднеширотное летнее распределение.

<u>Таблица 1.</u> Гелиогеофизическая информация о пусках на <u>ст.Тумба</u> (<u>8ºN,77ºE</u>)

Номер	Дата	Время	Зенит-	F _{10,7}	Кр	Ар	Dst,
пуска	проведения	проведения	ный				нT
	пуска	пуска в UT	угол, "				
	(дд.мм.гг.)	(час.мин.)					
46	01.05.1985	11.34	71	81	3	10	34
47	08.05.1985	11.55	76	84	3	8	5
48	16.05.1985	11.54	76	95	2	11	19
49	22.05.1985	11.35	71	83	1	5	3
50	29.05.1985	11.55	75	73	0	4	4
51	05.06.1985	11.37	70	84	1	5	1
52	19.06.1985	11.58	74	72	1	3	8
53	27.06.1985	12.16	77	70	2	13	13

Таблица 2. Метеорологическая информация о пусках

Номер	T75,	TSp,	T30,	Vx80,	Vy80,	Vx60,	Vy60,	Vx30,	Vy30,
пуска	⁰ C	⁰ C	⁰ C	м/с	м/с	м/с	м/с	м/с	м/с
46	-108	3	-33	_	-	-5	33	-2	17
47	-92	-3	-40	_	-	0	12	0	-1
48	-99	-8	-38	2	-100	12	-6	1	3
49	-	-7	-39	-	-	-	-	-3	5
50	-104	-5	-41	-16	-62	13	21	-5	-5
51	-101	-9	-42	-22	-90	-10	27	1	-3
52	-88	-12	-45	-	-	-5	-42	2	3
53	_	_	_	_	_	-	_	_	-

Рис.4. Высотные зависимости электронной концентрации [e](h), полученные в мае-июне 1985г. на ст.Тумба (табл.1).

Вертиқальный потоқ энергии из тропосферы достаточен для объяснения наблюдаемых амплитуд ВГВ — внутренних гравитационных волн в верхней атмосфере. Волны распространяются вверх по нақлонной траеқтории, поэтому эффекты в верхней атмосфере могут проявиться не только за многие сотни қилометров от тропосферного источниқа, но и через несқолько дней после своего возникновения. Одним из интенсивных источников тақих волн может быть ПГЦ тропический циклон. Возниқающие при этом волны могут достигать даже верхней ионосферы.

Трэки ТЦ № 8501-01В, № 8502-02В и положение пол.Тумба

Атмосферная температура на разных высотах в течение мая-июня 1985 г.

Профили [e](h) (N 50, N 52, усредненные для χ =71⁰ and 76⁰); Отношение профилей (N 52, усредненные для χ =71⁰ and 76⁰) к [e](h) - профилю N50, измеренного в активной фазе ТЦ

$\begin{array}{l} 1985\\ 68 \leq F_{10.7} \leq 105\\ F_{aver} \approx 77 \end{array}$

 $\frac{1988}{100} \le F_{10.7} \le 245$ $F_{aver} \approx 139.5$

$[e]_{mod} = k*F + Const$

$d[e] = [e]_{emp} - k*F$

1. На основе детального синхронного анализа серии измерений электронной концентрации ([e]) и термодинамических параметров слоя D ионосферы, полученных ракетным зондированием в экваториальной зоне, а также дистанционных данных по тропическому циклогенезу в северной части Индийского океана, впервые зарегистрирован факт понижения [e] в области D на расстоянии около 1000 км (в горизонтальной проекции) от ядра ТЦ, действующего в активной фазе. Наибольшего понижения [е] в среднем в 3-4 раза достигает на высотах 71±3 км. Кроме того, во время действия ТЦ было зафиксировано небольшое повышение температуры на высоте стратопаузы около 3 градусов Цельсия, а нижняя граница области D поднялась где-то на 5 км. Если сравнивать влияние ТЦ на нижнюю экваториальную ионосферу с влиянием солнечной вспышки (!) в высоких широтах, то можно сказать, что его воздействие меньше только в 2-3 раза(!).

2. При использовании данных по тропическому циклогенезу в Индийском и Тихом океанах выяснилось, что характер зависимости [e] (в области D ионосферы) от солнечной активности в дни с ТЦ и без ТЦ практически одинаков, но в нижней части D-области [e] в дни с ТЦ ниже [e] в дни без ТЦ.

3. Влияние ТЦ на нижнюю ионосферу возможно на расстоянии до 4000 – 5000 км.