

Построение комбинированной системы мониторинга ПЭС ионосферы над территорией России по данным радиопросвечивания сигналами навигационных систем и аналитической модели NeQuick

А. В. Новиков, А. А. Романов, А. А. Романов

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ

«РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

> МОСКОВСКИЙ ФИЗИКО – ТЕХНИЧЕСКИЙ ИНСТИТУТ

Ионосфера как среда распространения волн микроволнового диапазона

Полное электронное содержание ионосферы

Постановка

задачи Ионосфера Определение ПЭС Связь ПЭС и коэффициента преломления Мониторинг ПЭС **LPUC** Структура сигнала Код и фаза Принцип просвечивания Сплаживание кодовых измерений (pasoeeinin Томография Адаптивная модель ионосферы

Некоторые результаты

Выводы

Связь ПЭС и коэффициента преломления

И

$$\rho' = \int n(\rho) \, d\rho$$

$$\rho' = \rho + \Delta \rho_{\rm trop} + \Delta \rho_{\rm ion}$$

$$\rho' = \rho + \Delta \rho_{\rm trop} + \Delta \rho_{\rm ion}$$

$$\rho' = \rho + \Delta \rho_{\rm trop} + \Delta \rho_{\rm ion}$$

$$\Delta \rho_{\rm trop} = \int (n_{\rm trop}(\rho) - 1) \, d\rho$$

$$\Delta \rho_{\rm ion} = \mp \frac{C_X}{2} E \nu^{-2}$$

$$n_{\rm trop} = 77.6 \frac{P}{T} + 3.73 \times 10^5 \frac{P_w}{T^2}$$

$$E = \int N_e(\rho) \, d\rho$$
Records

© ФГУП «РНИИ КП»

4

Мониторинг ПЭС ионосферы

© ФГУП «РНИИ КП»

5

Характеристики современных глобальных навигационных спутниковых систем

Высота орбиты 19100 км 20000 км Наклонение орбиты **64,8**° 55° Номинальная численность группировки 24 24 Число плоскостей 3 6 Распределение спутников в плоскости равномерное неравномерное Период обращения КА 11 ч 15 мин 1/2 астрономических суток

задачи Ионосфера Определение ПЭС Связь ПЭС и коэффициента преломления Мониторинг ПЭС ГНСС Структура сигнала Код и фаза Принцип просвечивания Сплаживание кодовых измерений (pasoeeinin Томография Адаптивная

Постановка

модель ионосферы

Некоторые результаты

Выводы

Структура навигационного сигнала

O

Измерения псевдодальностей по коду и фазе

Постановка

Определение ПЭС

Структура сигнала

просвечивания

Адаптивная

ионосферы

Некоторые результаты

Сплаживание кодовых

задачи Ионосфера

Frice

Связь ПЭС и коэффициента преломления Мониторинг ПЭС

Код и фаза Принцип

ивмерений

фазовыми Томография

модель

Выводы

$$\begin{split} P_{i}^{k} &= c\left(t_{i} - t^{k}\right) = c\,\tau_{i}^{k} \\ \tau_{i}^{k} &= t_{i} - t^{k} \\ \hline P_{i}^{k} &= \rho_{i}^{k} + c\left(\Delta t_{i} - \Delta t^{k}\right) + \Delta\rho_{i,\text{trop}}^{k} + \Delta\rho_{i,\text{ion}}^{k} + c\left(b^{k} + b_{i}\right) + \epsilon \\ L_{i}^{k} &= \rho_{i}^{k} + c\left(\Delta t_{i} - \Delta t^{k}\right) + \Delta\rho_{i,\text{trop}}^{k} - \Delta\rho_{i,\text{ion}}^{k} + \lambda B_{i}^{k} + \epsilon \\ \hline \text{бозначим:} \quad \rho_{i}^{k} + c\left(\Delta t_{i} - \Delta t^{k}\right) + \Delta\rho_{i,\text{trop}}^{k} = \rho_{i}^{\prime k} \\ L_{i,1}^{k} &= \rho_{i}^{\prime k} - I_{i}^{k} + \lambda_{1} B_{i,1}^{k} \\ L_{i,2}^{k} &= \rho_{i}^{\prime k} - \xi I_{i}^{k} + \lambda_{2} B_{i,2}^{k} \\ P_{i,1}^{k} &= \rho_{i}^{\prime k} + I_{i}^{k} + c\left(b^{k,1} + b_{i,1}\right) \\ P_{i,2}^{k} &= \rho_{i}^{\prime k} + \xi I_{i}^{k} + c\left(b^{k,2} + b_{i,2}\right) \end{split}$$

Принцип радиопросвечивания ионосферы двухчастотным сигналом глобальных навигационных систем

$$L_4 = L_1 - L_2$$

$$\begin{aligned} L_{i,4}^k &= -\xi_4 \, I_i^k + B_{i,4}^k \\ P_{i,4}^k &= +\xi_4 \, I_i^k + c \, (\Delta b^k + \Delta b_i) \end{aligned}$$

$$\begin{split} \xi_4 &= 1 - \xi \\ B_{i,4}^k &= \lambda_1 \, B_{i,1}^k - \lambda_2 \, B_{i,2}^k \\ \Delta b^k &= b^{k,1} - b^{k,2} \\ \Delta b_i &= b_{i,1} - b_{i,2} \end{split}$$

задачи Ионосфера Определение ПЭС Связь ПЭС и коэффициента преломления Мониторинг ПЭС **Frice** Структура сигнала Код и фаза Принцип просвечивания CLIERKNEEHNE KONOBEIX ивмерений (pasoseimin Томография

Постановка

Адаптивная модель ионосферы

Некоторые результаты

Выводы

Сглаживание кодовых измерений фазовыми

Постановка задачи

Ионосфера Определение ПЭС Связь ПЭС и коэффициента преломления Мониторинг ПЭС ГКСС Структура смгнеле Код и фаза Принцип просвечивания Сглаживание кодовых измерений фазовыми

> Адаптивная модель ионосферы

Некоторые результаты

Выводы

$$\tilde{P}_{i,1}^{k}(t) = \bar{P}_{i,1}^{k} + \Delta L_{i,1}^{k}(t) + 2 \frac{\nu_{2}^{2}}{\nu_{1}^{2} - \nu_{2}^{2}} \left(\Delta L_{i,1}^{k}(t) - \Delta L_{i,2}^{k}(t) \right)$$

$$\tilde{P}_{i,2}^{k}(t) = \bar{P}_{i,2}^{k} + \Delta L_{i,2}^{k}(t) + 2 \frac{\nu_{1}^{2}}{\nu_{1}^{2} - \nu_{2}^{2}} \left(\Delta L_{i,1}^{k}(t) - \Delta L_{i,2}^{k}(t) \right)$$

$$\begin{aligned} \Delta L_{i,1}^k(t) &= L_{i,1}^k(t) - \bar{L}_{i,1}^k \\ \Delta L_{i,2}^k(t) &= L_{i,2}^k(t) - \bar{L}_{i,2}^k \end{aligned}$$

Томография ионосферы

()1 **()**0 **Ø**2 () n Δh ΔΤ Тихий океан Охотское море o. Catanya г. Ногима г. Поронай г. Южно-Сахалинск Японское морч

Основные соотношения:

Постановка задачи $\varphi = I = \lambda r_e \int N(h, \tau) dh$ $I(\beta, \tau_i) = \int_{0}^{h_0} \frac{F(h, \tau)(R+h)}{\sqrt{R^2 \sin^2 \beta + 2Rh + h^2}}$

Решение обратной задачи

Формирование системы линейных алгебраических уравнений А. F. = D.

$$D_{J} = \frac{\Delta J_{J}}{\Delta \beta} \qquad A_{JM} = \frac{\Delta J_{M}}{\Delta \beta}$$

Итерационный метод решения системы уравнений ART

 $f^{k+1} = f^{k} + \frac{d_{i} - \langle d, f^{k} \rangle}{\langle d^{i} \rangle} d^{i}$

задачи Ионосфера Определение ПЭС Связь ПЭС и коэффициента преломления Мониторинг ПЭС Гг.СС

Постановка

Структура сигнала Код и фаза

Принцип просвечивания

Сглаживание кодовых измерений фазовыми Томография

> Адаптивная модель ионосферы

Некоторые результаты

Выводы

Модель

модель

СЛОЯ

© ФГУП «РНИИ КП»

∕МФТИ_

Простейшая объёмная модель ионосферы

Входные параметры объёмной полуэмпирической модели ионосферы

классическими методами

© ФГУП «РНИИ КП»

Московский Физико – Технический Институт

14

Солнечная долгота и число Ровера

© ФГУП «РНИИ КП»

Московский Физико – Технический Институт

15

Система мониторинга ионосферы, основанная на корректируемой модели NeQuick

Постановка задачи

Адаптивная модель ионосферы

Модель бесконе чнотонкого слоя Простейшая модель Входные параметры Солнечно-магнитные координаты Корректируемая модель

> Некоторые результаты

> > Выводы

Распределение уровня ионизации ионосферы

Вычисление ПЭС с помощью модели NeQuick

Точность решения навигационной задачи как мера адекватности модели ионосферы

Вид распределения невязок в плане

Критерии оценки:

- Невязка среднего и истинной позиции
- Пороговое значение

Адаптивная модель ионосферы

Некоторые результаты

Критерии оценки Невязка Пороговые значения Удалённая коррекция

Выводы

Вид распределения невязок в объёме

* Статистика за сутки по станции Иркутск на 1.08.2006

Постановка	_						
задачи	Геомагнитная обстановка	Кисловодс к	Норильск	Новосибирск	Иркутск	Модель	Дата
Алаптивная		15.855	19.0788	18.6045	17.5564	нет	
модель	Незначительное в олнение	74 17.1949 14.0427 Незначит в с	16.874	15.9305	Клобушар	1.08.2006	
ионосферы		13.1064	16.5644	15.687	14.4833	Мод. NeQuick	
Некоторые		17.2647	16.926	18.6906	16.0389	нет	7.08.2006
результаты	Буря	15.8864	15.1445	17.2477	14.5412	Клобушар	
<i>Критерии оценки</i> Невязка		13.3114	14.6502	15.0352	12.7553	Мод. NeQuick	
Пороговые значения		15.3542	22.3527	18.4587		нет	
Удалённая коррекция	Спокойно	13.6932	21.6584	17.1843		Клобушар	13.08.2006 Кло N
Выводы		12.3919	19.6232	15.6499		Мод. NeQuick	
		16.8323		16.7515		нет	
	Резкое	15.1181		15.4495		Клобушар	19.08.2006
	изменение	13.598		13.8846		Мод. NeQuick	

Модель Клобушара устраняет ~ 10 % невязки; адаптивная модель > 15 %

© ФГУП «РНИИ КП»

Московский Физико – Технический Институт

Пороговые значения

ая Постанов ка Зада	Геомагнитная обстановка	Кисловодск	Норильск	Новосибирск	Иркутск	Модель	Дата	
		29.5715	34.1559	31.3524	31.9826	нет	1.08.2006	
ре Адаптивника ме моди	Незначительное волнение	28.8919	33.2143	30.7563	29.2401	Клобушар		
ионосфе		26.5834	30.7879	26.2497	26.1173	Мод. NeQuick		
Начатар		31.2315 32.2877 30.5251	28.3467	нет				
результа	Буря	29.6233	32.2877	29.9365	27.7193	Клобушар	7.08.2006	7.08.2006
Критерии оц		27.0015	28.7142	25.5918	23.7328	Мод. NeQuick		
Нев		28.6181	38.4883	30.1962		нет	13.08.2006	
10 Удалённая корра	Спокойно	27.7718	35.7764	29.3214		Клобушар		
удаленная коррет		25.6745	35.1345	27.2151	Мод. NeQuick			
Вывод		29.6882		26.5383		нет		
)e	Резкое	28.2051		26.5383		Клобушар	19.08.2006	
	изменение	27.2055		23.6096		Мод. NeQuick		

Адаптивная модель превосходит модель Клобушара,

смещая пороговое значение к нулю не менее чем на 10%

Пороговые значения, удаленная коррекция

Постановка задачи

Адаптивная модель ионосферы

Некоторые результаты

Критерии оценки Невязка Пороговые значения Удалённая коррекция

Выводы

Дата	Модель	Новосибирск	Кисловодск	Геомагнитная обстановка
1.08.2006	нет	31.3524	29.5715	
	Клобушар	30.7563	28.8919	Незначительное в олнение
	Мод. NeQuick	27.5716	26.3168	
7.08.2006	нет	31.4086	31.1018	
	Клобушар	30.1544	30.6139	Буря
	Мод. NeQuick	26.0558	26.0706	
13.08.2006	нет	30.6543	30.4162	
	Клобушар	29.3448	28.7138	Спокойно
	Мод. NeQuick	27.5953	26.9458	
19.08.2006	нет	30.0822	28.11	
	Клобушар	28.9353	26.4746	Резкое
	Мод. NeQuick	26.0814	25.129	изменение

Адаптивная модель при использовании данных удаленной станции, с близким числом Ровера, уступает той же модели, использующей местные данные, однако, значительно превосходит модель Клобушара

© ФГУП «РНИИ КП»

Московский Физико – Технический Институт

Концепция построения гибкой системы мониторинга ПЭС ионосферы

Постановка задачи

Адаптивная модель ионосферы

Некоторые результаты

Выводы

- + Разработана и реализована методика определения межчастотных сдвигов на КА и ККС.
- + Создана адаптивная модель ионосферы на базе модели NeQuick
- + Предложены критерии оценки адекватности ионосферных моделей, не требующие дополнительных источников данных
- Показана целесообразность использования созданной модели для ионосферной коррекции в создаваемой системе функциональных дополнений ГЛОНАСС

Разностные методы мониторинга

Тройные разности
 исключают фазовые
 неоднозначности и
 систематические ошибки

- Возможно определение только относительного ПЭС
- Необходимо разложение по каким-либо базисным функциям и хорошее первое приближение

Постановка задачи Адаптивная модель ионосферы Некоторые результаты Выводы