IV ОТКРЫТАЯ ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА Москва, ноябрь, 2006 г.

Гашение гравитационнокапиллярных волн пленками нефтепродуктов

<u>С.А. Ермаков</u>, И.А. Сергиевская, Л.А. Гущин, Ю.Б.Щегольков

Институт прикладной физики РАН 603950, Нижний Новгород, ул. Ульянова, 46 stas.ermakov@hydro.appl.sci-nnov.ru, 007-8312-164935

Эксперименты по радиолокационному зондированию нефтяных пленок

- SIR C/X-SAR experiment (L-C-X-band SAR) 1994

University of Hamburg, Communication Research Lab (Tokio, Japan) – North Sea, Kurosio Stream: "биогенные" пленки - OLA, OLME, ..., нефть IFO 180

- Univ. Hamburg (L-C-X-Ku band "Heliscat") 1991-... "биогенные" пленки

- Эксперименты с нефтяными пленками (Singh et.al., 1986)

Эксперименты по дистанционному зондированию пленок (Gade et.al., 1998).

Гашение РЛ сигнала в нефтяном разливе (IFO 180), области "сильных" (слева) и "слабых" (справа) контрастов

Выводы: контраст для зон нефтяных разливов растет с уменьшением длины волны, уменьшается с ростом ветра.

Характеристики нефтяных пленок не контролировались

Содержание

- > Лабораторные исследования характеристик пленок нефтепродуктов
- > Эксперименты по дистанционному зондированию пленочных сликов
- Возможности диагностики пленок (различение биогенных и нефтяных пленок)

Исследование физических характеристик поверхностных пленок

Sketch of measuring characteristics of gravity-capillary waves

Dispersion relation for gravity-capillary waves

$$\omega = (\mathbf{g}\mathbf{k} + \sigma \mathbf{k}^3 / \rho)^{1/2}$$

 $\boldsymbol{\sigma}$ - the surface tension coefficient, k- wave number

Photograph of 25-Hz parametric ripples

Поверхностное натяжение органических ("биогенных") пленок

0.1 1.0 10.0 Concentration, mg/sq.m

Film pressure (=surface tension clean - surface tension contaminated) retrieved from measurements of wavelengths of surface waves

> Substances: oleic acid (OLE), oleyl alcohol (OLA), Emkarox (Emk), vegetable oil (VO), dodecyl alcohol (DA)

Коэффициент затухания поверхностных волн на мономолекулярных органических ("биогенных") пленках

Relative damping coefficients vs. surfactant concentration, measured using a parametric wave method

1 10 concentration, mg/sq.m

0

0

Упругости искусственных пленок

Вещество	Emk	VO	OLA	OLE	DA
КПН, мN/м	39	40	36	32	22
Упругость, мN/м	2-5	12	15	22	70

Упругости биогенных пленок на морской поверхности

Типичные упругости биогенных морских пленок в сликах 10-20 мН/м

Crude oil $- T = 22 - 24^{\circ} C$ 70-- T=5-7⁰C Surface & interfacial tension 60 Diesel fuel $T=22-24^{\circ}$ 50 -80- $- T = 6 - 8^{\circ} C$ Surface & interfacial tension 40-70- $-\Theta$ T=1-2⁰C 60-30 -50. 20 $40 \cdot$ 10. 30-20-0.001 0.010 0.100 1.000 10.000 10. Thickness, mm 0.001 0.010 0.100 1.000 10.000 **Crude oil, Frequency 15 Hz** Thickness, mm

Коэффициент поверхностного натяжения нефтяных пленок

Diesel fuel, frequency 27.5 Hz

Surface/interfacial tension (retrieved from GCW wavelenght) vs. thickness for oil films <u>at different temperatures</u>.

The data at thickness values of about 10 mm correspond to the surface tension of oil.

Коэффициент затухания поверхностных волн на пленках нефтепродуктов

Сырая нефть

Wave frequency 15 Hz

Relative damping vs. thickness for a crude oil and diesel fuel at different temperatures

Коэффициент затухания поверхностных волн на пленках нефтепродуктов и оценки вязкоупругости нефтяных пленок

Отн. вязкость диз.топлива 8

Кривые – расчеты по модели Jenkins&Jakobs, 1997

Отн. вязкость нефти 20

Viscoelasticity of CO/OD (thin) films

Film	Surface &	Interfacial	Relative	Surface
material	Interfacial tension	tension mN/m	viscosity	Elasticity mN/m
Crude oil	Empirical dependence	0-10	15-20	3-4
Diesel fuel	-//-//-	0-10	8	3-4
Kerosene	-//-//-	0-10	1.3	4-6

Натурные эксперименты с искусственными сликами

Радиолокаторы 8.7 мм; 3.2 cm Оптические спектранализаторы: диапазон длин ветровых волн 0.5-10см

Пленки:

полимер Emkarox (Emk), растительное масло (VO), олеиловый спирт (OLA), олеиновая кислота (OLE), додециловый спирт (DA) диз.топливо (ДТ)

РЛ/оптический комплекс ИПФ РАН

Эксперименты по р.л.зондированию органических и нефтяных пленок

Записи интенсивностей сигналов обратного рассеяния в Х и Ка-диапазонах в экспериментах со сликами

Гашение ветровых волн пленками. Модель локального баланса

A local balance model for the spectrum of wind waves (Pelinovsky, Donelan&Pierson, Ermakov et.al..)

$$\frac{dN(k, x, t)}{dt} = \Pi_{a} + \beta(u_{*}, k)N - \gamma(E, \sigma, k)N + I_{nl}(N)$$

$$N(\mathbf{k}, \mathbf{x}, t) = \rho F(\mathbf{k}, \mathbf{x}, t)\omega(\mathbf{k})/|\mathbf{k}|$$

$$F - \text{the wavenumber spectrum of wind wa}$$

 β - wind wave growth rate, γ - wave damping coefficient, σ - surface tension, E - film elasticity, u_* - friction velocity

$$I_{nl} \sim N^n$$

Contrast $K(k) = F_{nsl}(k)/F_{sl}(k)$ in the wavenumber spectrum of wind waves

$$K(k) = \left[\frac{\beta(u_{*nsl}, k) - \gamma(0, \sigma, k)}{\beta(u_{*sl}, k) - \gamma(E, \sigma, k)}\right]$$

Bragg scattering : $K_{radar} = K_{hydro}$

 $\beta > \gamma$ n=1; $\beta < \gamma$ n=-1

ves

Натурные эксперименты с искусственными сликами

Контраст в сликах VO по данным подспутниковых экспериментов с платформы

Контрасты. Модель и эксперименты.

Контрасты для волн см-диапазона для пленок олеиновой кислоты, растительного масла, сырой нефти и диз.топлива. Скорость ветра 6 м/с. Измерения РЛ и оптическими спектранализаторами

Спектральные контрасты в штилевых пятнах

Спектральный контраст для "штилевой зоны" - области падения скорости ветра с 9 м/с до 7 м/с

Выводы

- Получены значения физических параметров органических мономолекулярных пленок и пленок нефтепродуктов. Тонкие (<10 мкм) пленки нефтепродуктов могут быть описаны как упругие, вязкость для них несущественна, параметр упругости для них – единицы мН/м, что значительно меньше, чем для типичных "биогенных" пленок
- РЛ контраст в L-C-Х-диапазонах (см-волны) растет с уменьшением длины волны радиолокатора и увеличивается с ростом упругости пленок. Основной физический механизм гашения см-волн - линейное затухание волн, которое зависит от упругости (и вязкости) пленок. Для тонких нефтяных пленок р.л. контрасты меньше, чем для "биогенных" пленок.
- Контрасты в см-диапазоне удовлетворительно описываются простой моделью локального баланса
- Для оценки физических характеристик пленок и различение "биогенных" пленок и нефтяных разливов возможно использование <u>многочастотных</u> РЛ систем. Измерение РЛ контрастов в Ка-диапазоне позволит эффективно обнаруживать пленки, а измерения в L-, C- и X- диапазонах – различать их на фоне штилевых пятен и уточнять количественные характеристики пленок, в частности, величины их упругости.
- Расширение возможностей РЛ диагностики пленок возможно при использовании <u>доплеровских</u> РЛ систем. Доплеровский сдвиг РЛ сигнала в сликах меняется в зависимости от упругости пленки.

Доплеровские сдвиги частоты сигналов 8-мм скаттерометра в сликах как функции упругости пленок

Разность доплеровских сдвигов частоты радиолокатора в сликах и вне сликов