ОПТИМАЛЬНЫЕ УСЛОВИЯ ЗАХВАТА И СЕРФОТРОННОГО УСКОРЕНИЯ ЭЛЕКТРОНОВ ЭЛЕКТРОМАГНИТНОЙ ВОЛНОЙ В КОСМИЧЕСКОЙ ПЛАЗМЕ ПРИ БОЛЬШИХ НАЧАЛЬНЫХ ЭНЕРГИЯХ ЧАСТИЦ

А.Н.Ерохин¹, Н.Н.Зольникова², Н.С.Ерохин^{1,2}, Л.А.Михайловская² ¹Российский университет дружбы народов ²Институт космических исследований РАН E-mail : benkatz2x2@gmail.com

Аннотация. На основе численных расчетов нелинейного уравнения для фазы волны на траектории частицы рассмотрена динамика серфотронного ускорения электронов электромагнитной волной, распространяющейся поперек внешнего магнитного поля в космической плазме, при больших значениях компонент начального импульса электрона. Показано, что для сильно релятивистских начальных значений компонент импульса электронов их захват в режим ультрарелятивистского ускорения происходит в основном в двух интервалах начальной фазы волны на траектории частицы. Результаты представляют интерес для развития современных представлений о механизмах генерации потоков ультрарелятивистских частиц в космической плазме.

1. Введение

Одним их эффективных механизмов генерации потоков ультрарелятивистских частиц является серфотронное ускорение зарядов электромагнитными волнами, которое рассматривалось ранее, например, в работах [1-7]. Серфотронное ускорение зарядов происходит в магнитоактивной плазме вследствие черенковского резонанса при взаимодействии волна-частица, что возможно в случае волны р-поляризации, имеющей компоненту поля вдоль направления волнового вектора **k** причем для амплитуд волны выше некоторого порогового значения циклотронное вращение зарядов подавлено, а захваченная частица в среднем движется в ускоряющем волновом поле. Подходящей ветвью колебаний являются, например, волны на частотах верхнего гибридного резонанса плазмы. Пусть внешнее магнитное поле направлено вдоль оси z, электромагнитная волна распространяется вдоль оси x

имея электрическое поле **E** = Re [**A** exp (i Ψ)], где $\Psi = \omega$ t - k x фаза волны, **A** – комплексная амплитуда. Удобно ввести параметры: u = ω_{He}/ω , v = $(\omega_{pe}/\omega)^2$, где ω_{He} = eH₀ /m_e c – циклотронная частота нерелятивистских электронов плазмы, ω_{pe} = $(4\pi e^2 n_0/m_e)^{1/2}$ – электронная ленгмюровская частота, n₀ плотность плазмы. Условие возможности черенковского резонанса волны с частицами следующее 1 – u² < v < 1. Захват заряженных частиц в режим серфотронного ускорения происходит для амплитуд волны выше порога $\sigma > u \gamma_p = u / (1 - \beta_p^2)^{1/2}$, $\beta_p = \omega / ck$, где $\sigma = eE_0/m_e c \omega$ безразмерная амплитуда волны. Используя уравнения движения для импульса ускоряемого электрона **p**, их интегралы движения получаем следующее нелинейное уравнение для фазы волны на траектории частицы $\Psi(\tau)$:

$$\gamma \beta_{\rm p} d^2 \Psi / d\tau^2 - \sigma (1 - \beta_{\rm x}^2) \cdot \cos \Psi - u \beta_{\rm y} = 0,$$

где $\tau = \omega t$, $\beta = v / c$, $\gamma = \{1 + h^2 + [J + u \beta_p (\tau - \Psi)]^2\}^{1/2} / (1 - \beta_x^2)^{1/2}$ релятивистский фактор ускоряемой частицы, $h = \gamma \beta_z$ интеграл движения. Это нелинейное уравнение решается численно с начальными данными $\Psi(0) = \Psi_0$, $\Psi_\tau(0) = a$. Соответственно имеем $\beta_x(0) = \beta_p (1 - a)$, причем для параметра **a** имеется условие 1 – $(1/\beta_p) < a < 1 + (1/\beta_p)$. Анализ асимптотик решения показывает, что при сильном ускорении электрона численное решение должно выходить на следующие асимптотики для релятивистского фактора и скорости $\gamma(\tau) \approx u \beta_p \gamma_p \tau$, $\beta_x \approx \beta_p$, $\beta_y \approx 1 / \gamma_p$.

2. Содержание

Для нахождения начальных фаз $\Psi(0)$, при которых происходит захват электрона в режим неограниченного ускорения волной, в расчетах фиксировались исходные параметры задачи h, $g = \gamma(0)\beta_y(0)$, β_p , u, a, σ , причем для фазовой скорости волны полагалось $0 < \beta_p < 1$. Амплитуда волны σ выбиралась несколько выше порогового значения $\sigma = 1.5 \sigma_c$, где $\sigma_c = u \gamma_p$. Затем численными расчетами на умеренных временах τ порядка 40000 определялись диапазоны начальных фаз, в которых имел место захват электрона в режим неограниченного ускорения волной. Если на этом интервале для некоторых фаз $\Psi(0)$ захвата частицы волной не было, счет выполнялся до τ порядка 10^5 и более.

Приведем результаты расчетов для следующего варианта параметров задачи h = 30, u = 0.2, g = 20, β_p = 0.5, a = 0 при выборе начального значения фазы интервале – 3 ≤ Ψ(0) ≤ 3. В данном случае $\gamma(0) = 41.649$, период циклотронного вращения $2\pi\gamma(0)/u$ равен 1308. Для значений начальной фазы $\Psi(0) = -3, -2.8, -2.7,$ 0.7, 0.8, 1, 1.4, 1.8, 2.2, 2.6, 3 захват в режим серфинга происходит сразу. При значениях $\Psi(0) = -2.6, -2.2, -1.8, -1.4, -1, -0.6, -0.2,$ 0.2, 0.6 на временах счета $\tau < 10^5$ захват электронов волной не наблюдался. Для захваченных частиц фаза волны Ψ(τ) совершает колебания в эффективной потенциальной яме с постепенно уменьшающейся амплитудой, но возрастающим периодом колебаний около значения 2.5 на больших временах. Типичный график $\Psi(\tau)$ дан на рис.1 для варианта $\Psi(0) = 0.7$.

Релятивистский фактор $\gamma(\tau)$, поперечные компоненты импульса захваченного электрона возрастают практически с постоянным темпом, частности, с хорошей точностью для $\gamma(\tau)$ выполняется следующая аппроксимация $\gamma(\tau) \approx \Psi(0) = + 0.115 \tau$. Для момента времени $\tau = 105000$ имеем $\gamma(\tau) \approx 12150$ т.е. энергия частицы увеличилась почти в 300 раз. Для иллюстрации на рис.2 даны графики $\gamma(\tau)$ и поперечных компонент импульса ускоряемого электрона $g_x(\tau)$, $g_x(\tau)$. Как видно из рис.2, кривые практически совпадают с прямыми линиями (асимптотики этих характеристик).

Пусть $\Phi(\tau) = d\Psi / d\tau$. На фазовой плоскости (Φ , Ψ) движение изображающей точки происходит около особой точки типа устойчивый фокус по спиралевидной сжимающейся кривой. Аналогичные результаты численных расчетов получаются и для других (благоприятных для серфинга) значений начальной фазы.

Были проведены расчеты для более высоких начальных значений импульса электрона h = 80, g = 50 при неизменных прочих параметрах задачи, когда $\Psi(0) = 108.94, 2\pi\gamma(0)/u = 3422.$ Благоприятными для немедленного захвата частицы волной оказались, в частности, следующие значения начальной фазы $\Psi(0)$ = 3, 2.6, 2.2, 1.8, 1.4, 1, 0.8, 0.7, - 2.71, - 2.75, - 2.8, - 3. Для $\Psi(0) = 3$ к моменту времени $\tau = 105000$ релятивистский фактор $\gamma(\tau)$ достиг значения 12190, а смещение захваченной частицы в направлении распространения волны было $\xi = c k / \omega = 52500$. Графики $\gamma(\tau)$, $g_x(\tau), g_x(\tau), \xi(\tau)$ близки к прямолинейным аппроксимациям. В плоскости (x, y) траектория частицы весьма близка к прямой линии. Компоненты поперечной (к магнитному полю) плоскости осциллируя с убывающей амплитудой постепенно выходят на их асимптотические значения. Продольная компонента скорости β₇ по мере ускорения убывает обратно пропорционально $\gamma(\tau)$, что соответствует сохранению продольного импульса частицы. Полная поперечная скорость захваченной частицы с ростом ее энергии выходит на асимптотику $\beta_{\perp} = 1$. Как и выше с ростом энергии траектория изображающей точки навивается на особую точку типа устойчивый фокус. В качестве иллюстрации динамики ускорения захваченной частицы ниже на рис.3 представлена траектория изображающей точки на плоскости поперечных компонент скорости электрона $\beta_x(\tau)$, $\beta_x(\tau)$ для интервала $\tau < 60000$.

3. Выводы

В настоящей работе на основе численных расчетов проведен анализ динамики захвата и последующего ультрарелятивистского серфотронного ускорения электронов с высокими значениями компонент импульса электромагнитной волной с частотой из области верхнего гибридного резонанса, распространяющейся в космической плазме поперек слабого магнитного поля. Амплитуда электрического поля волны превышала пороговое для реализации серфотронного механизма ускорения значение на 50 %. Рассмотрена также динамика компонент скорости, импульса и энергии частицы, а также структура фазовой плоскости (Ф, Ψ) захваченной частицы.

Начальные значения фазы волны на траектории частицы были взяты в интервале |Ψ(0)|≤ *π*. Для больших значений компонент импульса частицы структура области начальных фаз, благоприятных для реализации серфотронного ускорения, сильно упрощается. Этот важно для проведения в последующих работах оценок числа захватываемых волной частиц, их вклада в затухание волны при серфотронном ускорении, а также максимальных энергий ускоренных частиц при взаимодействии с волновыми пакетами, локализованными в пространстве. Заметим, что при слаборелятивистских энергиях электрона, как это было установлено ранее, время захвата частицы в режим серфинга испытывает большие вариации в зависимости от значения начальной фазы $\Psi(0)$.

Кроме того, предстоит исследовать серфотронное ускорение электронов при отрицательных начальных значениях импульса частицы вдоль волнового фронта $g_y(0) = \gamma(0) \beta_y(0)$, когда частица оставаясь захваченной должна тормозиться и поменяв знак компоненты импульса g_y перейти в режим сильного ускорения.

Литература

[1]. N.Katsouleas, J.M.Dawson. Phys.Rev. Letters. 1983, v.51, p. 392.

[2]. Б.Э.Грибов, Р.З.Сагдеев, В.Д.Шапиро, В.И.Шевченко. Письма в ЖЭТФ. 1985, т.42, № 2, с.54.

[3]. Н.С.Ерохин, А.А.Лазарев, С.С.Моисеев, Р.З.Сагдеев. Доклады Академии наук. 1987, т.295, № 4, с.849.

[4] Н.С.Ерохин, С.С.Моисеев, Р.З.Сагдеев. Письма в Астрономический журнал. 1989, т.15, № 1, с.3.

[5]. Г.Н.Кичигин. ЖЭТФ. 2001, т.119, вып.6, с.1038.

[6]. А.И.Нейштадт, А.В.Артемьев, Л.М.Зеленый, Д.Л.Вайнштейн. Письма в ЖЭТФ. 2009, т. 89, вып.9, с.528.

[7]. R.Shkevov, N.S.Erokhin, L.A.Mikhailovskaya, N.N.Zolnikova. Journal of Atmospheric and Solar-Terrestrial Physics. 2012, v.99, № 1, P.73.